20 research outputs found
Recommended from our members
The EUropean Network of National Schizophrenia Networks Studying GeneâEnvironment Interactions (EU-GEI): Incidence and First-Episode CaseâControl Programme
Funder: FP7 Ideas: European Research Council; doi: http://dx.doi.org/10.13039/100011199; Grant(s): HEALTH-F2-2010-241909Abstract: Purpose: The EUropean Network of National Schizophrenia Networks Studying GeneâEnvironment Interactions (EU-GEI) study contains an unparalleled wealth of comprehensive data that allows for testing hypotheses about (1) variations in incidence within and between countries, including by urbanicity and minority ethnic groups; and (2) the role of multiple environmental and genetic risk factors, and their interactions, in the development of psychotic disorders. Methods: Between 2010 and 2015, we identified 2774 incident cases of psychotic disorders during 12.9 million person-years at risk, across 17 sites in 6 countries (UK, The Netherlands, France, Spain, Italy, and Brazil). Of the 2774 incident cases, 1130 cases were assessed in detail and form the case sample for caseâcontrol analyses. Across all sites, 1497 controls were recruited and assessed. We collected data on an extensive range of exposures and outcomes, including demographic, clinical (e.g. premorbid adjustment), social (e.g. childhood and adult adversity, cannabis use, migration, discrimination), cognitive (e.g. IQ, facial affect processing, attributional biases), and biological (DNA via blood sample/cheek swab). We describe the methodology of the study and some descriptive results, including representativeness of the cohort. Conclusions: This resource constitutes the largest and most extensive incidence and caseâcontrol study of psychosis ever conducted
Recommended from our members
The EUropean Network of National Schizophrenia Networks Studying GeneâEnvironment Interactions (EU-GEI): Incidence and First-Episode CaseâControl Programme
Funder: FP7 Ideas: European Research Council; doi: http://dx.doi.org/10.13039/100011199; Grant(s): HEALTH-F2-2010-241909Abstract: Purpose: The EUropean Network of National Schizophrenia Networks Studying GeneâEnvironment Interactions (EU-GEI) study contains an unparalleled wealth of comprehensive data that allows for testing hypotheses about (1) variations in incidence within and between countries, including by urbanicity and minority ethnic groups; and (2) the role of multiple environmental and genetic risk factors, and their interactions, in the development of psychotic disorders. Methods: Between 2010 and 2015, we identified 2774 incident cases of psychotic disorders during 12.9 million person-years at risk, across 17 sites in 6 countries (UK, The Netherlands, France, Spain, Italy, and Brazil). Of the 2774 incident cases, 1130 cases were assessed in detail and form the case sample for caseâcontrol analyses. Across all sites, 1497 controls were recruited and assessed. We collected data on an extensive range of exposures and outcomes, including demographic, clinical (e.g. premorbid adjustment), social (e.g. childhood and adult adversity, cannabis use, migration, discrimination), cognitive (e.g. IQ, facial affect processing, attributional biases), and biological (DNA via blood sample/cheek swab). We describe the methodology of the study and some descriptive results, including representativeness of the cohort. Conclusions: This resource constitutes the largest and most extensive incidence and caseâcontrol study of psychosis ever conducted
The continuity of effect of schizophrenia polygenic risk score and patterns of cannabis use on transdiagnostic symptom dimensions at first-episode psychosis: findings from the EU-GEI study
Abstract: Diagnostic categories do not completely reflect the heterogeneous expression of psychosis. Using data from the EU-GEI study, we evaluated the impact of schizophrenia polygenic risk score (SZ-PRS) and patterns of cannabis use on the transdiagnostic expression of psychosis. We analysed first-episode psychosis patients (FEP) and controls, generating transdiagnostic dimensions of psychotic symptoms and experiences using item response bi-factor modelling. Linear regression was used to test the associations between these dimensions and SZ-PRS, as well as the combined effect of SZ-PRS and cannabis use on the dimensions of positive psychotic symptoms and experiences. We found associations between SZ-PRS and (1) both negative (B = 0.18; 95%CI 0.03â0.33) and positive (B = 0.19; 95%CI 0.03â0.35) symptom dimensions in 617 FEP patients, regardless of their categorical diagnosis; and (2) all the psychotic experience dimensions in 979 controls. We did not observe associations between SZ-PRS and the general and affective dimensions in FEP. Daily and current cannabis use were associated with the positive dimensions in FEP (B = 0.31; 95%CI 0.11â0.52) and in controls (B = 0.26; 95%CI 0.06â0.46), over and above SZ-PRS. We provide evidence that genetic liability to schizophrenia and cannabis use map onto transdiagnostic symptom dimensions, supporting the validity and utility of the dimensional representation of psychosis. In our sample, genetic liability to schizophrenia correlated with more severe psychosis presentation, and cannabis use conferred risk to positive symptomatology beyond the genetic risk. Our findings support the hypothesis that psychotic experiences in the general population have similar genetic substrates as clinical disorders
A Coculture Model Mimicking the Tumor Microenvironment Unveils Mutual Interactions between Immune Cell Subtypes and the Human Seminoma Cell Line TCam-2
Testicular germ cell cancer (TGCC) is the most common type of cancer in young men. Seminomas account for around half of them and are characterized by a pronounced infiltration of immune cells. So far, the impact of the tumor microenvironment (TME) on disease progression, especially the interaction of individual immune cell subtypes with the tumor cells, remains unclear. To address this question, we used an in vitro TME model involving the seminoma-derived cell line Tcam-2 and immune cell subsets purified from human peripheral blood. T cells and monocytes were strongly activated when individually cocultured with Tcam-2 cells as revealed by increased expression of activation markers and pro-inflammatory cytokines both on the mRNA and protein level. Importantly, the interaction between tumor and immune cells was mutual. Gene expression of pluripotency markers as well as markers of proliferation and cell cycle activity were upregulated in Tcam-2 cells in cocultures with T cells, whereas gene expression of SOX17, a marker for seminomas, was unaltered. Interestingly, the impact of monocytes on gene expression of Tcam-2 cells was less pronounced, indicating that the effects of individual immune cell subsets on tumor cells in the TME are highly specific. Collectively, our data indicate that seminoma cells induce immune cell activation and thereby generate a strong pro-inflammatory milieu, whereas T cells conversely increase the proliferation, metastatic potential, and stemness of tumor cells. Although the employed model does not fully mimic the physiological situation found in TGCC in vivo, it provides new insights potentially explaining the connection between inflammatory infiltrates in seminomas and their tendency to burn out and metastasize
A Coculture Model Mimicking the Tumor Microenvironment Unveils Mutual Interactions between Immune Cell Subtypes and the Human Seminoma Cell Line TCam-2
Testicular germ cell cancer (TGCC) is the most common type of cancer in young men. Seminomas account for around half of them and are characterized by a pronounced infiltration of immune cells. So far, the impact of the tumor microenvironment (TME) on disease progression, especially the interaction of individual immune cell subtypes with the tumor cells, remains unclear. To address this question, we used an in vitro TME model involving the seminoma-derived cell line Tcam-2 and immune cell subsets purified from human peripheral blood. T cells and monocytes were strongly activated when individually cocultured with Tcam-2 cells as revealed by increased expression of activation markers and pro-inflammatory cytokines both on the mRNA and protein level. Importantly, the interaction between tumor and immune cells was mutual. Gene expression of pluripotency markers as well as markers of proliferation and cell cycle activity were upregulated in Tcam-2 cells in cocultures with T cells, whereas gene expression of SOX17, a marker for seminomas, was unaltered. Interestingly, the impact of monocytes on gene expression of Tcam-2 cells was less pronounced, indicating that the effects of individual immune cell subsets on tumor cells in the TME are highly specific. Collectively, our data indicate that seminoma cells induce immune cell activation and thereby generate a strong pro-inflammatory milieu, whereas T cells conversely increase the proliferation, metastatic potential, and stemness of tumor cells. Although the employed model does not fully mimic the physiological situation found in TGCC in vivo, it provides new insights potentially explaining the connection between inflammatory infiltrates in seminomas and their tendency to burn out and metastasize
Phenotype and gene signature of testicular tumors in 129.MOLFâChr19 mice resemble human teratomas
Abstract Background Testicular germ cell tumor (TGCT) is the most common type of tumor in young men. Type II germ cell tumors including postpubertalâtype teratomas are derived from the germ cell neoplasia in situ (GCNIS), whereas prepubertalâtype teratomas arise independently of the GCNIS. The consomic mouse strain 129.MOLFâChr19 (M19) is a suitable murine model of such tumors, but its characterization remains incomplete. Objective Here, we interrogated the suitability of testicular tumors in M19 mice as a model of human TGCT by analyzing their histological features and gene expression signature. Material and methods Testes collected from M19 mice of different ages were categorized by macroscopic appearance based on size and the degree of suspected tumorigenesis. Histological sections from selected tumors were stained with Hematoxylin and Eosin, and expression of genes associated with tumorigenesis was determined in frozen tissue samples from a large range of tumors of different subclasses using RTâqPCR and Fluidigm Dynamic Arrays. Results Macroscopically, testicular specimens appeared very heterogeneous concerning size and signs indicating the presence of a tumor. Histological analysis confirmed the development of teratomas with areas of cells corresponding to all three germ cell layers. Gene expression analyses indicated upregulation of markers related to proliferation, vascular invasive potential and pluripotency, and revealed a strong correlation of gene expression with tumor size and a significant intercorrelation of individual genes. Discussion and conclusion TGCT in M19 mice is reminiscent of human testicular teratomas presenting with areas of cells derived from all germ layers and showing a typical gene signature. We thus confirm that these mice can serve as a suitable murine model of pure teratomas for preclinical research.Deutsche Forschungsgemeinschaft https://doi.org/10.13039/50110000165
The Subtype Identity of Testicular Cancer Cells Determines Their Immunostimulatory Activity in a Coculture Model
Testicular germ cell cancer (TGCC) is subdivided into several subtypes. While seminomatous germ cell tumors (SGCT) are characterized by an intensive infiltration of immune cells which constitute a pro-inflammatory tumor micromilieu (TME), immune cells in non-seminomatous germ cell tumors (NSGCT) are differently composed and less abundant. Previously, we have shown that the seminomatous cell line TCam-2 promotes T cell and monocyte activation in a coculture model, resulting in mutual interactions between both cell types. Here we set out to compare this feature of TCam-2 cells with the non-seminomatous cell line NTERA-2. Peripheral blood T cells or monocytes cocultured with NTERA-2 cells failed to secrete relevant amounts of pro-inflammatory cytokines, and significantly downregulated the expression of genes encoding activation markers and effector molecules. In contrast, immune cells cocultured with TCam-2 cells produced IL-2, IL-6 and TNFα, and strongly upregulated the expression of multiple pro-inflammatory genes. Furthermore, the expression of genes involved in proliferation, stemness and subtype specification remained unaltered in NTERA-2 cells during coculture with T cells or monocytes, indicating the absence of mutual interactions. Collectively, our findings uncover fundamental differences between SGCT and NSGCT in their capability to generate a pro-inflammatory TME, which possibly impacts the clinical features and prognosis of both TGCC subtypes.Deutsche ForschungsgemeinschaftDeutsche ForschungsgemeinschaftOpen Access Publication Funds of the University of GöttingenOpen-Access-Publikationsfonds 202
The Subtype Identity of Testicular Cancer Cells Determines Their Immunostimulatory Activity in a Coculture Model
Testicular germ cell cancer (TGCC) is subdivided into several subtypes. While seminomatous germ cell tumors (SGCT) are characterized by an intensive infiltration of immune cells which constitute a pro-inflammatory tumor micromilieu (TME), immune cells in non-seminomatous germ cell tumors (NSGCT) are differently composed and less abundant. Previously, we have shown that the seminomatous cell line TCam-2 promotes T cell and monocyte activation in a coculture model, resulting in mutual interactions between both cell types. Here we set out to compare this feature of TCam-2 cells with the non-seminomatous cell line NTERA-2. Peripheral blood T cells or monocytes cocultured with NTERA-2 cells failed to secrete relevant amounts of pro-inflammatory cytokines, and significantly downregulated the expression of genes encoding activation markers and effector molecules. In contrast, immune cells cocultured with TCam-2 cells produced IL-2, IL-6 and TNFα, and strongly upregulated the expression of multiple pro-inflammatory genes. Furthermore, the expression of genes involved in proliferation, stemness and subtype specification remained unaltered in NTERA-2 cells during coculture with T cells or monocytes, indicating the absence of mutual interactions. Collectively, our findings uncover fundamental differences between SGCT and NSGCT in their capability to generate a pro-inflammatory TME, which possibly impacts the clinical features and prognosis of both TGCC subtypes