19 research outputs found

    CLIPR-59 regulates TNF-α-induced apoptosis by controlling ubiquitination of RIP1

    Get PDF
    Tumor necrosis factor-α (TNF-α) has important roles in several immunological events by regulating apoptosis and transcriptional activation of cytokine genes. Intracellular signaling mediated by TNF-receptor-type 1 (TNFR1) is constituted by two sequential protein complexes: Complex-I containing the receptor and Complex-II-containing Caspase-8. Protein modifications, particularly ubiquitination, are associated with the regulation of the formation of these complexes. However, the underlying mechanisms remain poorly defined. Here, we identified CLIP-170-related 59 kDa protein (CLIPR-59) as a novel adaptor protein for TNFR1. Experimental reduction of CLIPR-59 levels prevented induction of apoptosis and activation of caspases in the context of TNF-α signaling. CLIPR-59 binds TNFR1 but dissociates in response to TNF-α stimulation. However, CLIPR-59 is also involved in and needed for the formation of Complex-II. Moreover, CLIPR-59 regulates TNF-α-induced ubiquitination of receptor-interacting protein 1 (RIP1) by its association with CYLD, a de-ubiquitinating enzyme. These findings suggest that CLIPR-59 modulates ubiquitination of RIP1, resulting in the formation of Complex-II and thus promoting Caspase-8 activation to induce apoptosis by TNF-α

    Avicin D, a Plant Triterpenoid, Induces Cell Apoptosis by Recruitment of Fas and Downstream Signaling Molecules into Lipid Rafts

    Get PDF
    Avicins, a family of triterpene electrophiles originally identified as potent inhibitors of tumor cell growth, have been shown to be pleiotropic compounds that also possess antioxidant, anti-mutagenic, and anti-inflammatory activities. We previously showed that Jurkat cells, which express a high level of Fas, are very sensitive to treatment with avicins. Thus, we hypothesized that avicins may induce cell apoptosis by activation of the Fas pathway. By using a series of cell lines deficient in cell death receptors, we demonstrated that upon avicin D treatment, Fas translocates to the cholesterol- and sphingolipid-enriched membrane microdomains known as lipid rafts. In the lipid rafts, Fas interacts with Fas-associated death domain (FADD) and Caspase-8 to form death-inducing signaling complex (DISC) and thus mediates cell apoptosis. Interfering with lipid raft organization by using a cholesterol-depleting compound, methyl-β-cyclodextrin, not only prevents the clustering of Fas and its DISC complex but also reduces the sensitivity of the cells to avicin D. Avicin D activates Fas pathways independent of the association between extracellular Fas ligands and Fas receptors. A deficiency in Fas and its downstream signaling molecules leads to the resistance of the cells to avicin D treatment. Taken together, our results demonstrate that avicin D triggers the redistribution of Fas in the membrane lipid rafts, where Fas activates receptor-mediated cell death

    A network-based analysis of allergen-challenged CD4+T cells from patients with allergic rhinitis

    No full text
    We performed a network-based analysis of DNA microarray data from allergen-challenged CD4 + T cells from patients with seasonal allergic rhinitis. Differentially expressed genes were organized into a functionally annotated network using the Ingenuity Knowledge Database, which is based on manual review of more than 200000 publications. The main function of this network is the regulation of lymphocyte apoptosis, a role associated with several genes of the tuber necrosis factor superfamily. The expression of TNFRSF4, one of the genes in this family, was found to be 48 times higher in allergen-challenged cells than in diluent-challenged cells. TNFRSF4 is known to inhibit apoptosis and to enhance Th2 proliferation. Examination of a different material of allergen-stimulated peripheral blood mononuclear cells showed a higher number of interleukin-4 + type 2 CD4 + T (Th2) cells in patients than in controls (

    Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule.

    No full text
    Cell death is achieved by two fundamentally different mechanisms: apoptosis and necrosis. Apoptosis is dependent on caspase activation, whereas the caspase-independent necrotic signaling pathway remains largely uncharacterized. We show here that Fas kills activated primary T cells efficiently in the absence of active caspases, which results in necrotic morphological changes and late mitochondrial damage but no cytochrome c release. This Fas ligand-induced caspase-independent death is absent in T cells that are deficient in either Fas-associated death domain (FADD) or receptor-interacting protein (RIP). RIP is also required for necrotic death induced by tumor necrosis factor (TNF) and TNF-related apoptosis-inducing ligand (TRAIL). In contrast to its role in nuclear factor kappa B activation, RIP requires its own kinase activity for death signaling. Thus, Fas, TRAIL and TNF receptors can initiate cell death by two alternative pathways, one relying on caspase-8 and the other dependent on the kinase RIP

    Reprogramming of pro-inflammatory human macrophages to an anti-inflammatory phenotype by bile acids

    No full text
    Cholestasis is caused by autoimmune reactions, drug-induced hepatotoxicity, viral infections of the liver and the obstruction of bile ducts by tumours or gallstones. Cholestatic conditions are associated with impaired innate and adaptive immunity, including alterations of the cellular functions of monocytes, macrophages, NK cells and T-cells. Bile acids act as signalling molecules, affecting lipopolysaccharide (LPS)-induced cytokine expression in primary human macrophages. The present manuscript investigates the impact of bile acids, such as taurolithocholic acid (TLC), on the transcriptome of human macrophages in the presence or absence of LPS. While TLC itself has almost no effect on gene expression under control conditions, this compound modulates the expression of 202 out of 865 transcripts in the presence of LPS. Interestingly, pathway analysis revealed that TLC specifically supressed the expression of genes involved in mediating pro-inflammatory effects, phagocytosis, interactions with pathogens and autophagy as well as the recruitment of immune cells, such as NK cells, neutrophils and T cells. These data indicate a broad influence of bile acids on inflammatory responses and immune functions in macrophages. These findings may contribute to the clinical observation that patients with cholestasis present a lack of response to bacterial or viral infections
    corecore