45 research outputs found

    A Distinguished Vacuum State for a Quantum Field in a Curved Spacetime: Formalism, Features, and Cosmology

    Full text link
    We define a distinguished "ground state" or "vacuum" for a free scalar quantum field in a globally hyperbolic region of an arbitrarily curved spacetime. Our prescription is motivated by the recent construction of a quantum field theory on a background causal set using only knowledge of the retarded Green's function. We generalize that construction to continuum spacetimes and find that it yields a distinguished vacuum or ground state for a non-interacting, massive or massless scalar field. This state is defined for all compact regions and for many noncompact ones. In a static spacetime we find that our vacuum coincides with the usual ground state. We determine it also for a radiation-filled, spatially homogeneous and isotropic cosmos, and show that the super-horizon correlations are approximately the same as those of a thermal state. Finally, we illustrate the inherent non-locality of our prescription with the example of a spacetime which sandwiches a region with curvature in-between flat initial and final regions

    Electrostatics in a simple wormhole revisited

    Full text link
    The electrostatic potential generated by a point charge at rest in a simple static, spherically symmetric wormhole is given in the form of series of multipoles and in closed form. The general potential which is physically acceptable depends on a parameter due to the fact that the monopole solution is arbitrary. When the wormhole has Z2-symmetry, the potential is completely determined. The calculation of the electrostatic self-energy and of the self-force is performed in all cases considered.Comment: 16 pages, no figure

    New revival phenomena for linear integro–differential equations

    No full text
    We present and analyse a novel manifestation of the revival phenomenon for linear spatially periodic evolution equations, in the concrete case of three nonlocal equations that arise in water wave theory and are defined by convolution kernels. Revival in these cases is manifested in the form of dispersively quantised cusped solutions at rational times. We give an analytic description of this phenomenon, and present illustrative numerical simulations
    corecore