9 research outputs found

    An Approach for Reliably Investigating Hippocampal Sharp Wave-Ripples In Vitro

    Get PDF
    Among the various hippocampal network patterns, sharp wave-ripples (SPW-R) are currently the mechanistically least understood. Although accurate information on synaptic interactions between the participating neurons is essential for comprehensive understanding of the network function during complex activities like SPW-R, such knowledge is currently notably scarce. counterpart. We show that slice storage in the interface chamber close to physiological temperature is the required condition to preserve network integrity that is necessary for the generation of SPW-R. Moreover, we demonstrate the utility of our method for studying synaptic and network properties of SPW-R, using electrophysiological and imaging methods that can only be applied in the submerged system.The approach presented here demonstrates a reliable and experimentally simple strategy for studying hippocampal sharp wave-ripples. Given its utility and easy application we expect our model to foster the generation of new insight into the network physiology underlying SPW-R

    A Calcium-Dependent Mechanism of Neuronal Memory

    No full text

    Distinct intracellular calcium transients in neurites and somata integrate neuronal signals.

    No full text
    Intracellular calcium signals have distinct temporal and spatial patterns in neurons in which signal initiation and repetitive spiking occurs predominantly in the neurite. We investigated the functional implications of the coexpression of different isoforms of ryanodine receptors (RyR) and inositol 1,4,5-trisphosphate receptors (InsP3Rs) using immunocytochemistry, Western blotting, and calcium imaging in neuronally differentiated PC12 cells. InsP3R type III, an isoform that has been shown to be upregulated in neuronal apoptosis, is exclusively expressed in the soma, serving as a gatekeeper for high-magnitude calcium surges. InsP3R type I is expressed throughout the cell and can be related to signal initiation and repetitive spiking in the neurite. RyR types 2 and 3 are distributed throughout the cell. In the soma, they serve as amplifying molecular switches, facilitating recruitment of the InsP3R type III-dependent pool. In the neurite, they decrease the probability of repetitive spiking. Use of a cell-permeant analog of InsP3 suggested that regional specificity in InsP3 production and surface-to-volume effects play minor roles in determining temporal and spatial calcium signaling patterns in neurons. Our findings suggest that additional modulatory processes acting on the intracellular channels are necessary to generate spatially specific calcium signaling

    Distinct intracellular calcium transients in neurites and somata integrate neuronal signals

    No full text
    Intracellular calcium signals have distinct temporal and spatial patterns in neurons in which signal initiation and repetitive spiking occurs predominantly in the neurite. We investigated the functional implications of the coexpression of different isoforms of ryanodine receptors (RyR) and inositol 1,4,5-trisphosphate receptors (InsP3Rs) using immunocytochemistry, Western blotting, and calcium imaging in neuronally differentiated PC12 cells. InsP3R type III, an isoform that has been shown to be upregulated in neuronal apoptosis, is exclusively expressed in the soma, serving as a gatekeeper for high-magnitude calcium surges. InsP3R type I is expressed throughout the cell and can be related to signal initiation and repetitive spiking in the neurite. RyR types 2 and 3 are distributed throughout the cell. In the soma, they serve as amplifying molecular switches, facilitating recruitment of the InsP3R type III-dependent pool. In the neurite, they decrease the probability of repetitive spiking. Use of a cell-permeant analog of InsP3 suggested that regional specificity in InsP3 production and surface-to-volume effects play minor roles in determining temporal and spatial calcium signaling patterns in neurons. Our findings suggest that additional modulatory processes acting on the intracellular channels are necessary to generate spatially specific calcium signaling.</p

    Loss of Ryanodine Receptor 2 impairs neuronal activity-dependent remodeling of dendritic spines and triggers compensatory neuronal hyperexcitability

    No full text
    Dendritic spines are postsynaptic domains that shape structural and functional properties of neurons. Upon neuronal activity, Ca2+ transients trigger signaling cascades that determine the plastic remodeling of dendritic spines, which modulate learning and memory. Here, we study in mice the role of the intracellular Ca2+ channel Ryanodine Receptor 2 (RyR2) in synaptic plasticity and memory formation. We demonstrate that loss of RyR2 in pyramidal neurons of the hippocampus impairs maintenance and activity-evoked structural plasticity of dendritic spines during memory acquisition. Furthermore, post-developmental deletion of RyR2 causes loss of excitatory synapses, dendritic sparsification, overcompensatory excitability, network hyperactivity and disruption of spatially tuned place cells. Altogether, our data underpin RyR2 as a link between spine remodeling, circuitry dysfunction and memory acquisition, which closely resemble pathological mechanisms observed in neurodegenerative disorders

    Nuclear calcium signalling in the regulation of brain function

    No full text
    corecore