68 research outputs found

    How does a cadaver model work for testing ultrasound diagnostic capability for rheumatic-like tendon damage?

    Get PDF
    To establish whether a cadaver model can serve as an effective surrogate for the detection of tendon damage characteristic of rheumatoid arthritis (RA). In addition, we evaluated intraobserver and interobserver agreement in the grading of RA-like tendon tears shown by US, as well as the concordance between the US findings and the surgically induced lesions in the cadaver model. RA-like tendon damage was surgically induced in the tibialis anterior tendon (TAT) and tibialis posterior tendon (TPT) of ten ankle/foot fresh-frozen cadaveric specimens. Of the 20 tendons examined, six were randomly assigned a surgically induced partial tear; six a complete tear; and eight left undamaged. Three rheumatologists, experts in musculoskeletal US, assessed from 1 to 5 the quality of US imaging of the cadaveric models on a Likert scale. Tendons were then categorized as having either no damage, (0); partial tear, (1); or complete tear (2). All 20 tendons were blindly and independently evaluated twice, over two rounds, by each of the three observers. Overall, technical performance was satisfactory for all items in the two rounds (all values over 2.9 in a Likert scale 1-5). Intraobserver and interobserver agreement for US grading of tendon damage was good (mean κ values 0.62 and 0.71, respectively), with greater reliability found in the TAT than the TPT. Concordance between US findings and experimental tendon lesions was acceptable (70-100 %), again greater for the TAT than for the TPT. A cadaver model with surgically created tendon damage can be useful in evaluating US metric properties of RA tendon lesions

    Cost-effectiveness analysis of pemetrexed versus docetaxel in the second-line treatment of non-small cell lung cancer in Spain: results for the non-squamous histology population

    Get PDF
    BackgroundThe objective of this study was to conduct a cost-effectiveness evaluation of pemetrexed compared to docetaxel in the treatment of advanced or metastatic non-small cell lung cancer (NSCLC) for patients with predominantly non-squamous histology in the Spanish healthcare setting.MethodsA Markov model was designed consisting of stable, responsive, progressive disease and death states. Patients could also experience adverse events as long as they received chemotherapy. Clinical inputs were based on an analysis of a phase III clinical trial that identified a statistically significant improvement in overall survival for non-squamous patients treated with pemetrexed compared with docetaxel. Costs were collected from the Spanish healthcare perspective.ResultsOutcomes of the model included total costs, total quality-adjusted life years (QALYs), total life years gained (LYG) and total progression-free survival (PFS). Mean survival was 1.03 years for the pemetrexed arm and 0.89 years in the docetaxel arm; QALYs were 0.52 compared to 0.42. Per-patient lifetime costs were € 34677 and € 32343, respectively. Incremental cost-effectiveness ratios were € 23967 per QALY gained and € 17225 per LYG.ConclusionsPemetrexed as a second-line treatment option for patients with a predominantly non-squamous histology in NSCLC is a cost-effective alternative to docetaxel according to the € 30000/QALY threshold commonly accepted in Spain

    Therapeutic DNA Vaccine Encoding Peptide P10 against Experimental Paracoccidioidomycosis

    Get PDF
    Paracoccidioidomycosis (PCM), caused by Paracoccidioides brasiliensis, is the most prevalent invasive fungal disease in South America. Systemic mycoses are the 10th most common cause of death among infectious diseases in Brazil and PCM is responsible for more than 50% of deaths due to fungal infections. PCM is typically treated with sulfonamides, amphotericin B or azoles, although complete eradication of the fungus may not occur and relapsing disease is frequently reported. A 15-mer peptide from the major diagnostic antigen gp43, named P10, can induce a strong T-CD4+ helper-1 immune response in mice. The TEPITOPE algorithm and experimental data have confirmed that most HLA-DR molecules can present P10, which suggests that P10 is a candidate antigen for a PCM vaccine. In the current work, the therapeutic efficacy of plasmid immunization with P10 and/or IL-12 inserts was tested in murine models of PCM. When given prior to or after infection with P. brasiliensis virulent Pb 18 isolate, plasmid-vaccination with P10 and/or IL-12 inserts successfully reduced the fungal burden in lungs of infected mice. In fact, intramuscular administration of a combination of plasmids expressing P10 and IL-12 given weekly for one month, followed by single injections every month for 3 months restored normal lung architecture and eradicated the fungus in mice that were infected one month prior to treatment. The data indicate that immunization with these plasmids is a powerful procedure for prevention and treatment of experimental PCM, with the perspective of being also effective in human patients

    Antiprogestin mifepristone inhibits the growth of cancer cells of reproductive and non-reproductive origin regardless of progesterone receptor expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mifepristone (MF) has been largely used in reproductive medicine due to its capacity to modulate the progesterone receptor (PR). The study of MF has been expanded to the field of oncology; yet it remains unclear whether the expression of PR is required for MF to act as an anti-cancer agent. Our laboratory has shown that MF is a potent inhibitor of ovarian cancer cell growth. In this study we questioned whether the growth inhibitory properties of MF observed in ovarian cancer cells would translate to other cancers of reproductive and non-reproductive origin and, importantly, whether its efficacy is related to the expression of cognate PR.</p> <p>Methods</p> <p>Dose-response experiments were conducted with cancer cell lines of the nervous system, breast, prostate, ovary, and bone. Cultures were exposed to vehicle or increasing concentrations of MF for 72 h and analysed for cell number and cell cycle traverse, and hypodiploid DNA content characteristic of apoptotic cell death. For all cell lines, expression of steroid hormone receptors upon treatment with vehicle or cytostatic doses of MF for 24 h was studied by Western blot, whereas the activity of the G1/S regulatory protein Cdk2 in both treatment groups was monitored <it>in vitro </it>by the capacity of Cdk2 to phosphorylate histone H1.</p> <p>Results</p> <p>MF growth inhibited all cancer cell lines regardless of tissue of origin and hormone responsiveness, and reduced the activity of Cdk2. Cancer cells in which MF induced G1 growth arrest were less susceptible to lethality in the presence of high concentrations of MF, when compared to cancer cells that did not accumulate in G1. While all cancer cell lines were growth inhibited by MF, only the breast cancer MCF-7 cells expressed cognate PR.</p> <p>Conclusions</p> <p>Antiprogestin MF inhibits the growth of different cancer cell lines with a cytostatic effect at lower concentrations in association with a decline in the activity of the cell cycle regulatory protein Cdk2, and apoptotic lethality at higher doses in association with increased hypodiploid DNA content. Contrary to common opinion, growth inhibition of cancer cells by antiprogestin MF is not dependent upon expression of classical, nuclear PR.</p

    Silicon particles as trojan horses for potential cancer therapy

    Get PDF
    [EN] Background: Porous silicon particles (PSiPs) have been used extensively as drug delivery systems, loaded with chemical species for disease treatment. It is well known from silicon producers that silicon is characterized by a low reduction potential, which in the case of PSiPs promotes explosive oxidation reactions with energy yields exceeding that of trinitrotoluene (TNT). The functionalization of the silica layer with sugars prevents its solubilization, while further functionalization with an appropriate antibody enables increased bioaccumulation inside selected cells. Results: We present here an immunotherapy approach for potential cancer treatment. Our platform comprises the use of engineered silicon particles conjugated with a selective antibody. The conceptual advantage of our system is that after reaction, the particles are degraded into soluble and excretable biocomponents. Conclusions: In our study, we demonstrate in particular, specific targeting and destruction of cancer cells in vitro. The fact that the LD50 value of PSiPs-HER-2 for tumor cells was 15-fold lower than the LD50 value for control cells demonstrates very high in vitro specificity. This is the first important step on a long road towards the design and development of novel chemotherapeutic agents against cancer in general, and breast cancer in particular.The authors acknowledge financial support from the following projects FIS2009-07812, MAT2012-35040, PROMETEO/2010/043, CTQ2011-23167, CrossSERS, FP7 MC-IEF 329131, and HSFP (project RGP0052/2012) and Medcom Tech SA. Xiang Yu acknowledges support by the Chinese government (CSC, Nr. 2010691036).Fenollosa Esteve, R.; Garcia-Rico, E.; Alvarez, S.; Alvarez, R.; Yu, X.; Rodriguez, I.; Carregal-Romero, S.... (2014). Silicon particles as trojan horses for potential cancer therapy. Journal of Nanobiotechnology. 12:1-10. https://doi.org/10.1186/s12951-014-0035-7S11012Prasad PN: Introduction to Nanomedicine and Nanobioengineering. Wiley, New York, 2012.Randall CL, Leong TG, Bassik N, Gracias DH: 3D lithographically fabricated nanoliter containers for drug delivery. Adv Drug Del Rev. 2007, 59: 1547-1561. 10.1016/j.addr.2007.08.024.Reibetanz U, Chen MHA, Mutukumaraswamy S, Liaw ZY, Oh BHL, Venkatraman S, Donath E, Neu BR: Colloidal DNA carriers for direct localization in cell compartments by pH sensoring. Biogeosciences. 2010, 11: 1779-1784.Tasciotti E, Liu X, Bhavane R, Plant K, Leonard AD, Price BK, Cheng MM-C, Decuzzi P, Tour JM, Robertson F, Ferrari M: Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat Nano. 2008, 3: 151-157. 10.1038/nnano.2008.34.Park J-H, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ: Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater. 2009, 8: 331-336. 10.1038/nmat2398.Hong C, Lee J, Son M, Hong SS, Lee C: In-vivo cancer cell destruction using porous silicon nanoparticles. Anti-Cancer Drugs. 2011, 22: 971-977. 910.1097/CAD.1090b1013e32834b32859cCanham LT: Device Comprising Resorbable Silicon for Boron Capture Neutron Therapy. UK Patent Nr. 0302283.7. Book Device Comprising Resorbable Silicon for Boron Capture Neutron Therapy. UK Patent Nr. 0302283.7 (Editor ed.^eds.). 2003, UK Patent Nr. 0302283.7, CityXiao L, Gu L, Howell SB, Sailor MJ: Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells. ACS Nano. 2011, 5: 3651-3659. 10.1021/nn1035262.Gil PR, Parak WJ: Composite nanoparticles take Aim at cancer. ACS Nano. 2008, 2: 2200-2205. 10.1021/nn800716j.Gomella LG: Is interstitial hyperthermia a safe and efficacious adjunct to radiotherapy for localized prostate cancer?. Nat Clin Pract Urol. 2004, 1: 72-73. 10.1038/ncpuro0041.Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A: Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neuro-Oncol. 2011, 103: 317-324. 10.1007/s11060-010-0389-0.Lal S, Clare SE, Halas NJ: Nanoshell-enabled photothermal cancer therapy: Impending clinical impact. Acc Chem Res. 2008, 41: 1842-1851. 10.1021/ar800150g.Lee C, Kim H, Hong C, Kim M, Hong SS, Lee DH, Lee WI: Porous silicon as an agent for cancer thermotherapy based on near-infrared light irradiation. J Mater Chem. 2008, 18: 4790-4795. 10.1039/b808500e.Osminkina LA, Gongalsky MB, Motuzuk AV, Timoshenko VY, Kudryavtsev AA: Silicon nanocrystals as photo- and sono-sensitizers for biomedical applications. Appl Phys B. 2011, 105: 665-668. 10.1007/s00340-011-4562-8.Jain PK, Huang X, El-Sayed IH, El-Sayed MA: Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res. 2008, 41: 1578-1586. 10.1021/ar7002804.Serda RE, Godin B, Blanco E, Chiappini C, Ferrari M: Multi-stage delivery nano-particle systems for therapeutic applications. Biochim Biophys Acta. 1810, 2011: 317-329.Xu R, Huang Y, Mai J, Zhang G, Guo X, Xia X, Koay EJ, Qin G, Erm DR, Li Q, Liu X, Ferrari M, Shen H: Multistage vectored siRNA targeting ataxia-telangiectasia mutated for breast cancer therapy. Small. 2013, 9: 1799-1808. 10.1002/smll.201201510.Park JS, Kinsella JM, Jandial DD, Howell SB, Sailor MJ: Cisplatin-loaded porous Si microparticles capped by electroless deposition of platinum. Small. 2011, 7: 2061-2069. 10.1002/smll.201100438.Xue M, Zhong X, Shaposhnik Z, Qu Y, Tamanoi F, Duan X, Zink JI: pH-operated mechanized porous silicon nanoparticles. J Am Chem Soc. 2011, 133: 8798-8801. 10.1021/ja201252e.Canham LT: Bioactive silicon structure fabrication through nanoetching techniques. Adv Mater. 1995, 7: 1033-1037. 10.1002/adma.19950071215.Popplewell JF, King SJ, Day JP, Ackrill P, Fifield LK, Cresswell RG, Di Tada ML, Liu K: Kinetics of uptake and elimination of silicic acid by a human subject: a novel application of 32Si and accelerator mass spectrometry. J Inorganic Biochem. 1998, 69: 177-180. 10.1016/S0162-0134(97)10016-2.Shabir Q, Pokale A, Loni A, Johnson DR, Canham LT, Fenollosa R, Tymczenko M, Rodr guez I, Meseguer F, Cros A, Cantarero A: Medically biodegradable hydrogenated amorphous silicon microspheres. Silicon. 2011, 3: 173-176. 10.1007/s12633-011-9097-4.Chen Y, Wan Y, Wang Y, Zhang H, Jiao Z: Anticancer efficacy enhancement and attenuation of side effects of doxorubicin with titanium dioxide nanoparticles. Int J Nanomed. 2011, 6: 2321-2326.Mackowiak SA, Schmidt A, Weiss V, Argyo C, von Schirnding C, Bein T, Bräuchle C: Targeted drug delivery in cancer cells with Red-light photoactivated mesoporous silica nanoparticles. Nano Lett. 2013, 13: 2576-2583. 10.1021/nl400681f.Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI: Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev. 2012, 41: 2590-2605. 10.1039/c1cs15246g.O Mara WC, Herring B, Hunt P: Handbook of Semiconductor Silicon Technology. Noyes Publication, New Jersey, 1990.Mikulec FV, Kirtland JD, Sailor MJ: Explosive nanocrystalline porous silicon and its Use in atomic emission spectroscopy. Adv Mater. 2002, 14: 38-41. 10.1002/1521-4095(20020104)14:13.0.CO;2-Z.Clement D, Diener J, Gross E, Kunzner N, Timoshenko VY, Kovalev D: Highly explosive nanosilicon-based composite materials. Phys Stat Sol A. 2005, 202: 1357-1359. 10.1002/pssa.200461102.Canham LT: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett. 1990, 57: 1046-1049. 10.1063/1.103561.Canham LT: Properties of Porous Silicon. INSPEC, United Kindom, 1997.Heinrich JL, Curtis CL, Credo GM, Sailor MJ, Kavanagh KL: Luminescent colloidal silicon suspensions from porous silicon. Science. 1992, 255: 66-68. 10.1126/science.255.5040.66.Littau KA, Szajowski PJ, Muller AJ, Kortan AR, Brus LE: A luminescent silicon nanocrystal colloid via a high-temperature aerosol reaction. J Phys Chem. 1993, 97: 1224-1230. 10.1021/j100108a019.Menz WJ, Shekar S, Brownbridge GPE, Mosbach S, Kōrmer R, Peukert W, Kraft M: Synthesis of silicon nanoparticles with a narrow size distribution: a theoretical study. J Aerosol Sci. 2012, 44: 46-61. 10.1016/j.jaerosci.2011.10.005.Swihart MT, Girshick SL: Thermochemistry and kinetics of silicon hydride cluster formation during thermal decomposition of silane. J Phys Chem B. 1998, 103: 64-76. 10.1021/jp983358e.Fenollosa R, Ramiro-Manzano F, Tymczenko M, Meseguer F: Porous silicon microspheres: synthesis, characterization and application to photonic microcavities. J Mater Chem. 2010, 20: 5210-5214. 10.1039/c0jm00079e.Ramiro-Manzano F, Fenollosa R, Xifré-Pérez E, Garín M, Meseguer F: Porous silicon microcavities based photonic barcodes. Adv Mater. 2011, 23: 3022-3025. 10.1002/adma.201100986.Kastl L, Sasse D, Wulf V, Hartmann R, Mircheski J, Ranke C, Carregal-Romero S, Martínez-López JA, Fernández-Chacón R, Parak WJ, Elsasser HP, Rivera-Gil P: Multiple internalization pathways of polyelectrolyte multilayer capsules into mammalian cells. ACS Nano. 2013, 7: 6605-6618. 10.1021/nn306032k.Schweiger C, Hartmann R, Zhang F, Parak W, Kissel T, Rivera_Gil P: Quantification of the internalization patterns of superparamagnetic iron oxide nanoparticles with opposite charge. J Nanobiotech. 2012, 10: 28-10.1186/1477-3155-10-28.Sanles-Sobrido M, Exner W, Rodr guez-Lorenzo L, Rodríguez-Gonzílez B, Correa-Duarte MA, Álvarez-Puebla RA, Liz-Marzán LM: Design of SERS-encoded, submicron, hollow particles through confined growth of encapsulated metal nanoparticles. J Am Chem Soc. 2009, 131: 2699-2705. 10.1021/ja8088444.Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, Mackey J, Glaspy J, Chan A, Pawlicki M, Pinter T, Valero V, Liu MC, Sauter G, von Minckwitz G, Visco F, Bee V, Buyse M, Bendahmane B, Tabah-Fisch I, Lindsay MA, Riva A, Crown J: Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011, 365: 1273-1283. 10.1056/NEJMoa0910383.Agus DB, Gordon MS, Taylor C, Natale RB, Karlan B, Mendelson DS, Press MF, Allison DE, Sliwkowski MX, Lieberman G, Kelsey SM, Fyfe G: Phase I clinical study of pertuzumab, a novel HER dimerization inhibitor, in patients with advanced cancer. J Clin Oncol. 2005, 23: 2534-2543. 10.1200/JCO.2005.03.184.Colombo M, Mazzucchelli S, Montenegro JM, Galbiati E, Corsi F, Parak WJ, Prosperi D: Protein oriented ligation on nanoparticles exploiting O6-alkylguanine-DNA transferase (SNAP) genetically encoded fusion. Small. 2012, 8: 1492-1497. 10.1002/smll.201102284.Franklin MC, Carey KD, Vajdos FF, Leahy DJ, de Vos AM, Sliwkowski MX: Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell. 2004, 5: 317-328. 10.1016/S1535-6108(04)00083-2.Paris L, Cecchetti S, Spadaro F, Abalsamo L, Lugini L, Pisanu ME, Lorio E, Natali PG, Ramoni C, Podo F: Inhibition of phosphatidylcholine-specific phospholipase C downregulates HER2 overexpression on plasma membrane of breast cancer cells. Breast Cancer Res. 2010, 12: R27-10.1186/bcr2575.Fenollosa R, Meseguer F, Tymczenko M: Silicon colloids: from microcavities to photonic sponges. Adv Mater. 2008, 20: 95-98. 10.1002/adma.200701589.Jasinski JM, Gates SM: Silicon chemical vapor deposition one step at a time: fundamental studies of silicon hydride chemistry. Acc Chem Res. 1991, 24: 9-15. 10.1021/ar00001a002.Xiao Q, Liu Y, Qiu Y, Zhou G, Mao C, Li Z, Yao Z-J, Jiang S: Potent antitumor mimetics of annonaceous acetogenins embedded with an aromatic moiety in the left hydrocarbon chain part. J Med Chem. 2010, 54: 525-533. 10.1021/jm101053k.Allman SA, Jensen HH, Vijayakrishnan B, Garnett JA, Leon E, Liu Y, Anthony DC, Sibson NR, Feizi T, Matthews S, Davis BG: Potent fluoro-oligosaccharide probes of adhesion in toxoplasmosis. ChemBioChem. 2009, 10: 2522-2529. 10.1002/cbic.200900425.Chambers DJ, Evans GR, Fairbanks AJ: Elimination reactions of glycosyl selenoxides. Tetrahedron. 2004, 60: 8411-8419. 10.1016/j.tet.2004.07.005.Tomabechi Y, Suzuki R, Haneda K, Inazu T: Chemo-enzymatic synthesis of glycosylated insulin using a GlcNAc tag. Bioorg Med Chem. 2010, 18: 1259-1264. 10.1016/j.bmc.2009.12.031.Pastoriza-Santos I, Gomez D, Perez-Juste J, Liz-Marzan LM, Mulvaney P: Optical properties of metal nanoparticle coated silica spheres: a simple effective medium approach. Phys Chem Chem Phys. 2004, 6: 5056-5060. 10.1039/b405157b

    Mutagenesis-Mediated Virus Extinction: Virus-Dependent Effect of Viral Load on Sensitivity to Lethal Defection

    Get PDF
    Background: Lethal mutagenesis is a transition towards virus extinction mediated by enhanced mutation rates during viral genome replication, and it is currently under investigation as a potential new antiviral strategy. Viral load and virus fitness are known to influence virus extinction. Here we examine the effect or the multiplicity of infection (MOI) on progeny production of several RNA viruses under enhanced mutagenesis. Results: The effect of the mutagenic base analogue 5-fluorouracil (FU) on the replication of the arenavirus lymphocytic choriomeningitis virus (LCMV) can result either in inhibition of progeny production and virus extinction in infections carried out at low multiplicity of infection (MOI), or in a moderate titer decrease without extinction at high MOI. The effect of the MOI is similar for LCMV and vesicular stomatitis virus (VSV), but minimal or absent for the picornaviruses foot-and-mouth disease virus (FMDV) and encephalomyocarditis virus (EMCV). The increase in mutation frequency and Shannon entropy (mutant spectrum complexity) as a result of virus passage in the presence of FU was more accentuated at low MOI for LCMV and VSV, and at high MOI for FMDV and EMCV. We present an extension of the lethal defection model that agrees with the experimental results. Conclusions: (i) Low infecting load favoured the extinction of negative strand viruses, LCMV or VSV, with an increase of mutant spectrum complexity. (ii) This behaviour is not observed in RNA positive strand viruses, FMDV or EMCV. (iii) The accumulation of defector genomes may underlie the MOI-dependent behaviour. (iv) LCMV coinfections are allowed but superinfection is strongly restricted in BHK-21 cells. (v) The dissimilar effects of the MOI on the efficiency of mutagenic-based extinction of different RNA viruses can have implications for the design of antiviral protocols based on lethal mutagenesis, presently under development. © 2012 Moreno et al.Centro de Biología Molecular Severo Ochoa; Ministerio de Ciencia e Innovación (MICINN); Fundación Ramón ArecesPeer Reviewe

    Molecular characterization of occult hepatitis B virus infection in patients with end-stage liver disease in Colombia.

    Get PDF
    ABSTARCT: Hepatitis B virus (HBV) occult infection (OBI) is a risk factor to be taken into account in transfusion, hemodialysis and organ transplantation. The aim of this study was to identify and characterize at the molecular level OBI cases in patients with end-stage liver disease. METHODS: Sixty-six liver samples were obtained from patients with diagnosis of end-stage liver disease submitted to liver transplantation in Medellin (North West, Colombia). Samples obtained from patients who were negative for the surface antigen of HBV (n = 50) were tested for viral DNA detection by nested PCR for ORFs S, C, and X and confirmed by Southern-Blot. OBI cases were analyzed by sequencing the viral genome to determine the genotype and mutations; additionally, viral genome integration events were examined by the Alu-PCR technique. RESULTS: In five cases out of 50 patients (10%) the criteria for OBI was confirmed. HBV genotype F (subgenotypes F1 and F3), genotype A and genotype D were characterized in liver samples. Three integration events in chromosomes 5q14.1, 16p13 and 20q12 affecting Receptor-type tyrosine-protein phosphatase T, Ras Protein Specific Guanine Nucleotide Releasing Factor 2, and the zinc finger 263 genes were identified in two OBI cases. Sequence analysis of the viral genome of the 5 OBI cases showed several punctual missense and nonsense mutations affecting ORFs S, P, Core and X. CONCLUSIONS: This is the first characterization of OBI in patients with end-stage liver disease in Colombia. The OBI cases were identified in patients with HCV infection or cryptogenic cirrhosis. The integration events (5q14.1, 16p13 and 20q12) described in this study have not been previously reported. Further studies are required to validate the role of mutations and integration events in OBI pathogenesis
    corecore