40 research outputs found

    WT1 Peptide Cancer Vaccine for Patients with Hematopoietic Malignancies and Solid Cancers

    Get PDF
    Wild-type Wilms' tumor gene WT1 is expressed at a high level in hematopoietic malignancies including acute leukemia, chronic myelogenous leukemia, and myelodysplastic syndromes, as well as in various kinds of solid cancers. Human cytotoxic T lymphocytes (CTLs), which could specifically lyse WT1-expressing tumor cells with HLA class I restriction, were generated in vitro. It was also demonstrated that mice immunized with the WT1 peptide rejected challenges by WT1-expressing cancer cells and survived with no signs of autoaggression to normal organs that physiologically expressed WT1. Furthermore, we and others detected IgM and IgG WT1 antibodies in patients with hematopoietic malignancies, indicating that the WT1 protein was highly immunogenic, and that immunoglobulin class-switch-inducing, WT1-specific, cellular immune responses were elicited in these patients. CD8+ WT1-specific CTLs were also detected in peripheral blood or tumor-draining lymph nodes of cancer patients. These results provided us with the rationale for elicitation of CTL responses targeting the WT1 product for cancer immunotherapy. On the basis of these findings, we performed a phase I clinical trial of a WT1 peptide cancer vaccine for the patients with malignant neoplasms. These results strongly suggested that the WT1 peptide cancer vaccine had efficacy in the clinical setting because clinical responses, including reduction of leukemic blast cells or regression of tumor masses, were observed after the WT1 vaccination in patients with hematopoietic malignancies or solid cancers. The power of a tumor-associated-antigen (TAA)-derived cancer vaccine may be enhanced in combination with stronger adjuvants, helper peptide, molecular-target-based drugs, or some chemotherapy drugs, such as gemcitabine, which has been revealed to suppress regulartory T-cell function. In contrast, reduction of WT1 peptide dose may be needed for the treatment of patients with hematological stem cell diseases, because rapid and strong destruction of malignant cell-sustained hematopoiesis before recovery of normal hematopoiesis may lead to pancytopenia in these patients

    Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia

    Get PDF
    Relapse is a major problem in acute myeloid leukemia (AML) and adversely impacts survival. In this phase II study, we investigated the effect of vaccination with dendritic cells (DCs) electroporated with Wilms’ tumor 1 (WT1) mRNA as post-remission treatment in 30 AML patients at very high risk of relapse. There was a demonstrable anti-leukemic response in 13 patients. Nine patients achieved molecular remission as demonstrated by normalization of WT1 transcript levels, 5 of which are sustained after a median follow-up of 109.4 months. Disease stabilization was achieved in 4 other patients. Five-year overall survival (OS) was higher in responders than in non-responders (53.8% vs. 25.0%; P=0.01). In patients receiving DCs in first complete remission (CR1), there was a vaccine-induced relapse reduction rate of 25% and the 5-year relapse-free survival was higher in responders than in non-responders (50% vs. 7.7%; P65 years who received DCs in CR1, 5-year OS was 69.2% and 30.8% respectively, as compared to 51.7% and 18% in the Swedish Acute Leukemia Registry (SALR). Long-term clinical response was correlated with increased circulating frequencies of poly-epitope WT1-specific CD8+ T-cells. Long-term OS was correlated with interferon-γ+ and tumor necrosis factor-α+ WT1-specific responses in delayed type hypersensitivity-infiltrating CD8+ T-lymphocytes. In conclusion, vaccination of AML patients with WT1 mRNA-electroporated DCs can be an effective strategy to prevent or delay relapse after standard chemotherapy, translating into improved OS rates, which are correlated with the induction of WT1-specific CD8+ T-cell response. This trial was registered at www.clinicaltrials.gov as #NCT00965224

    Efficient and Non-genotoxic RNA-Based Engineering of Human T Cells Using Tumor-Specific T Cell Receptors With Minimal TCR Mispairing

    Get PDF
    Genetic engineering of T cells with tumor specific T-cell receptors (TCR) is a promising strategy to redirect their specificity against cancer cells in adoptive T cell therapy protocols. Most studies are exploiting integrating retro- or lentiviral vectors to permanently introduce the therapeutic TCR, which can pose serious safety issues when treatment-related toxicities would occur. Therefore, we developed a versatile, non-genotoxic transfection method for human unstimulated CD8+ T cells. We describe an optimized double sequential electroporation platform whereby Dicer-substrate small interfering RNAs (DsiRNA) are first introduced to suppress endogenous TCR α and β expression, followed by electroporation with DsiRNA-resistant tumor-specific TCR mRNA. We demonstrate that double sequential electroporation of human primary unstimulated T cells with DsiRNA and TCR mRNA leads to unprecedented levels of transgene TCR expression due to a strongly reduced degree of TCR mispairing. Importantly, superior transgenic TCR expression boosts epitope-specific CD8+ T cell activation and killing activity. Altogether, DsiRNA and TCR mRNA double sequential electroporation is a rapid, non-integrating and highly efficient approach with an enhanced biosafety profile to engineer T cells with antigen-specific TCRs for use in early phase clinical trials

    Imaging Assessment of Tumor Response in the Era of Immunotherapy

    No full text
    Assessment of tumor response during treatment is one of the most important purposes of imaging. Before the appearance of immunotherapy, response evaluation criteria in solid tumors (RECIST) and positron emission tomography response criteria in solid tumors (PERCIST) were, respectively, the established morphologic and metabolic response criteria, and cessation of treatment was recommended when progressive disease was detected according to these criteria. However, various types of immunotherapy have been developed over the past 20 years, which show novel false positive findings on images, as well as distinct response patterns from conventional therapies. Antitumor immune response itself causes 18F-fluorodeoxyglucose (FDG) uptake in tumor sites, known as “flare phenomenon”, so that positron emission tomography using FDG can no longer accurately identify remaining tumors. Furthermore, tumors often initially increase, followed by stability or decrease resulting from immunotherapy, which is called “pseudoprogression”, so that progressive disease cannot be confirmed by computed tomography or magnetic resonance imaging at a single time point. As a result, neither RECIST nor PERCIST can accurately predict the response to immunotherapy, and therefore several new response criteria fixed for immunotherapy have been proposed. However, these criteria are still controversial, and also require months for response confirmation. The establishment of optimal response criteria and the development of new imaging technologies other than FDG are therefore urgently needed. In this review, we summarize the false positive images and the revision of response criteria for each immunotherapy, in order to avoid discontinuation of a truly effective immunotherapy
    corecore