7,092 research outputs found
Comparison between the Cramer-Rao and the mini-max approaches in quantum channel estimation
In a unified viewpoint in quantum channel estimation, we compare the
Cramer-Rao and the mini-max approaches, which gives the Bayesian bound in the
group covariant model. For this purpose, we introduce the local asymptotic
mini-max bound, whose maximum is shown to be equal to the asymptotic limit of
the mini-max bound. It is shown that the local asymptotic mini-max bound is
strictly larger than the Cramer-Rao bound in the phase estimation case while
the both bounds coincide when the minimum mean square error decreases with the
order O(1/n). We also derive a sufficient condition for that the minimum mean
square error decreases with the order O(1/n).Comment: In this revision, some unlcear parts are clarifie
A Realistic Description of Nucleon-Nucleon and Hyperon-Nucleon Interactions in the SU_6 Quark Model
We upgrade a SU_6 quark-model description for the nucleon-nucleon and
hyperon-nucleon interactions by improving the effective meson-exchange
potentials acting between quarks. For the scalar- and vector-meson exchanges,
the momentum-dependent higher-order term is incorporated to reduce the
attractive effect of the central interaction at higher energies. The
single-particle potentials of the nucleon and Lambda, predicted by the G-matrix
calculation, now have proper repulsive behavior in the momentum region q_1=5 -
20 fm^-1. A moderate contribution of the spin-orbit interaction from the
scalar-meson exchange is also included. As to the vector mesons, a dominant
contribution is the quadratic spin-orbit force generated from the rho-meson
exchange. The nucleon-nucleon phase shifts at the non-relativistic energies up
to T_lab=350 MeV are greatly improved especially for the 3E states. The
low-energy observables of the nucleon-nucleon and the hyperon-nucleon
interactions are also reexamined. The isospin symmetry breaking and the Coulomb
effect are properly incorporated in the particle basis. The essential feature
of the Lambda N - Sigma N coupling is qualitatively similar to that obtained
from the previous models. The nuclear saturation properties and the
single-particle potentials of the nucleon, Lambda and Sigma are reexamined
through the G-matrix calculation. The single-particle potential of the Sigma
hyperon is weakly repulsive in symmetric nuclear matter. The single-particle
spin-orbit strength for the Lambda particle is very small, in comparison with
that of the nucleons, due to the strong antisymmetric spin-orbit force
generated from the Fermi-Breit interaction.Comment: Revtex v2.09, 69 pages with 25 figure
Hybridization Mechanism for Cohesion of Cd-based Quasicrystals
Cohesion mechanism of cubic approximant crystals of newly discovered binary
quasicrystals, CdM (M=Yb and Ca), are studied theoretically. It is found
that stabilization due to alloying is obtained if M is an element with
low-lying unoccupied states. This leads to conclusion that the cohesion of
the Cd-based compounds is due to the hybridization of the states of Yb and
Ca with a wide band. %unlike known stable quasicrystals without transition
elements %such as Al-Li-Cu and Zn-Mg-RE (RE:rare earth). Although a diameter of
the Fermi sphere coincides with the strong Bragg peaks for Cd-Yb and Cd-Ca, the
Hume-Rothery mechanism does not play a principal role in the stability because
neither distinct pseudogap nor stabilization due to alloying is obtained for
isostructural Cd-Mg. In addition to the electronic origin, matching of the
atomic size is very crucial for the quasicrystal formation of the Cd-based
compounds. It is suggested that the glue atoms, which do not participate in the
icosahedral cluster, play an important role in stabilization of the compound.Comment: 4 pages, 2 figure
Spiky density of states in large complex Al-Mn phases
First-principle electronic structure calculations have been performed in
crystalline complex phases mu-Al4Mn and lambda-Al4Mn using the TB-LMTO method.
These atomic structures, related to quasicrystalline structures, contain about
560 atoms in a large hexagonal unit cell. One of the main characteristic of
their density of states is the presence of fine peaks the so-called "spiky
structure". From multiple-scattering calculations in real space, we show that
these fine peaks are not artifacts in ab-initio calculations, since they result
from a specific localization of electrons by atomic clusters of different
length scales
Asymptotic estimation theory for a finite dimensional pure state model
The optimization of measurement for n samples of pure sates are studied. The
error of the optimal measurement for n samples is asymptotically compared with
the one of the maximum likelihood estimators from n data given by the optimal
measurement for one sample.Comment: LaTeX, 23 pages, Doctoral Thesi
Long- and medium-range components of the nuclear force in quark-model based calculations
Quark-model descriptions of the nucleon-nucleon interaction contain two main
ingredients, a quark-exchange mechanism for the short-range repulsion and
meson-exchanges for the medium- and long-range parts of the interaction. We
point out the special role played by higher partial waves, and in particular
the 1F3, as a very sensitive probe for the meson-exchange part employed in
these interaction models. In particular, we show that the presently available
models fail to provide a reasonable description of higher partial waves and
indicate the reasons for this shortcoming.Comment: 19 pages, 7 figure
Resonant Formation of Molecules in Deuterium: An Atomic Beam Measurement of Muon Catalyzed dt Fusion
Resonant formation of molecules in collisions of muonic tritium
() on D was investigated using a beam of atoms,
demonstrating a new direct approach in muon catalyzed fusion studies. Strong
epithermal resonances in formation were directly revealed for the
first time. From the time-of-flight analysis of fusion
events, a formation rate consistent with times the theoretical prediction was obtained. For the largest
peak at a resonance energy of eV, this corresponds to a rate
of s, more than an order of magnitude larger
than those at low energies.Comment: To appear in Phys. Rev. Let
Gauge Equivalence in Two--Dimensional Gravity
Two-dimensional quantum gravity is identified as a second-class system which
we convert into a first-class system via the Batalin-Fradkin (BF) procedure.
Using the extended phase space method, we then formulate the theory in most
general class of gauges. The conformal gauge action suggested by David, Distler
and Kawai is derived from a first principle. We find a local, light-cone gauge
action whose Becchi-Rouet-Stora-Tyutin invariance implies Polyakov's curvature
equation , revealing the origin of the
Kac-Moody symmetry. The BF degree of freedom turns out be dynamically
active as the Liouville mode in the conformal gauge, while in the light-cone
gauge the conformal degree of freedom plays that r{\^o}le. The inclusion of the
cosmological constant term in both gauges and the harmonic gauge-fixing are
also considered.Comment: 30 pages, KANAZAWA 93-
Approximation of Feynman path integrals with non-smooth potentials
We study the convergence in of the time slicing approximation of
Feynman path integrals under low regularity assumptions on the potential.
Inspired by the custom in Physics and Chemistry, the approximate propagators
considered here arise from a series expansion of the action. The results are
ultimately based on function spaces, tools and strategies which are typical of
Harmonic and Time-frequency analysis.Comment: 18 page
Parity violation in deuteron photo-disintegration
We analyze the energy dependence for two types of parity-non-conserving
(PNC) asymmetries in the reaction in the near-threshold
region. The first one is the asymmetry in reaction with circularly polarized
photon beam and unpolarized deuteron target. The second one corresponds to
those with an unpolarized photon beam and polarized target. We find that the
two asymmetries have quite different energy dependence, and their shapes are
sensitive to the PNC-meson exchange coupling constants.
The predictions for the future possible experiments to provide definite
constraints for the PNC-coupling constants are discussed.Comment: 22 pages, 12 figures. Submitted to Phys.Rev.C 10Oct.0
- …