2,210 research outputs found
On the origin of magnetoresistance in SrFeMoO
We report detailed magnetization () and magnetoresistance () studies
on a series of SrFeMoO samples with independent control on anti-site
defect and grain boundary densities. These results, exhibiting a switching-like
behavior of with , establish that the is controlled by the
magnetic polarization of grain boundary regions, rather than of the grains
within a resonant tunnelling mechanism.Comment: 4 pages, 4 figure
Temperature-dependent photoemission spectral weight transfer and chemical potential shift in PrCaMnO : Implications for charge density modulation
We have studied the temperature dependence of the photoemission spectra of
PrCaMnO (PCMO) with , 0.3 and 0.5. For and 0.5,
we observed a gap in the low-temperature CE-type charge-ordered (CO) phase and
a pseudogap with a finite intensity at the Fermi level () in the
high-temperature paramagnetic insulating (PI) phase. Within the CO phase, the
spectral intensity near gradually increased with temperature. These
observations are consistent with the results of Monte Carlo simulations on a
model including charge ordering and ferromagnetic fluctuations [H. Aliaga {\it
et al.} Phys. Rev. B {\bf 68}, 104405 (2003)]. For , on the other hand,
little temperature dependence was observed within the low-temperature
ferromagnetic insulating (FI) phase and the intensity at remained low in
the high-temperature PI phase. We attribute the difference in the temperature
dependence near between the CO and FI phases to the different correlation
lengths of orbital order between both phases. Furthermore, we observed a
chemical potential shift with temperature due to the opening of the gap in the
FI and CO phases. The doping dependent chemical potential shift was recovered
at low temperatures, corresponding to the disappearance of the doping dependent
change of the modulation wave vector. Spectral weight transfer with hole
concentration was clearly observed at high temperatures but was suppressed at
low temperatures. We attribute this observation to the fixed periodicity with
hole doping in PCMO at low temperatures.Comment: 5pages, 7figure
Electronic Structure of the Chevrel-Phase Compounds SnMoSe: Photoemission Spectroscopy and Band-structure Calculations
We have studied the electronic structure of two Chevrel-phase compounds,
MoSe and SnMoSe, by combining photoemission
spectroscopy and band-structure calculations. Core-level spectra taken with
x-ray photoemission spectroscopy show systematic core-level shifts, which do
not obey a simple rigid-band model. The inverse photoemission spectra imply the
existence of an energy gap located eV above the Fermi level, which is
a characteristic feature of the electronic structure of the Chevrel compounds.
Quantitative comparison between the photoemission spectra and the
band-structure calculations have been made. While good agreement between theory
and experiment in the wide energy range was obtained as already reported in
previous studies, we found that the high density of states near the Fermi level
predicted theoretically due to the Van Hove singularity is considerably reduced
in the experimental spectra taken with higher energy resolution than in the
previous reports. Possible origins are proposed to explain this observation.Comment: 8 pages, 5 figure
Stranded investment associated with rapid energy system changes under the mid-century strategy in Japan
Japan’s mid-century strategy to reduce greenhouse gas (GHG) emissions by 80% by 2050 requires rapid energy system changes, which may lead to stranded assets in fossil fuel-related infrastructure. Existing studies have shown that massive stranding of assets in the energy supply side is possible; few studies have involved economy-wide stranded asset analysis. In this study, we estimated stranded investments in both the energy supply and demand sectors in Japan in the context of near-term goals for 2030 and the mid-century strategy. To this end, multiple emission scenarios for Japan were assessed based on various emission reduction targets for 2030 and 2050. The results show that stranded investments in the energy supply sectors occur mainly in coal power plants without carbon capture and storage (CCS), especially in scenarios without enhanced near-term mitigation targets. Increases of stranded investment in demand sectors were observed primarily under stringent mitigation scenarios, which exceed the 80% reduction target. In particular, investment for oil and gas heating systems in the buildings sector may be stranded at levels up to $20 billion US between 2021 and 2050. We further simulated a scenario incorporating a subsidy for devices that do not use fossil fuels as a sector-specific policy; this reduced the amount of stranded investment in the buildings sector. We confirmed the benefit of enhancing near-term mitigation targets to avoid generating stranded investments. These findings support the importance of inclusive energy and climate policy design involving not only pricing of carbon emissions but also complementary cross-sector economy-wide policies
Orbital ordering in LaSrMnO studied by model Hartree-Fock calculation
We have investigated orbital ordering in the half-doped manganite
LaSrMnO, which displays spin, charge and orbital ordering,
by means of unrestricted Hartree-Fock calculations on the multiband -
model. From recent experiment, it has become clear that
LaSrMnO exhibits a cross-type orbital
ordering rather than the widely believed rod-type orbital
ordering. The calculation reveals that cross-type orbital
ordering results from an effect of in-plane distortion as well as from the
relatively long out-of-plane Mn-O distance. For the "Mn" site, it is
shown that the elongation along the c-axis of the MnO octahedra leads to an
anisotropic charge distribution rather than the isotropic one.Comment: 4 pages, 5 figure
Coherent quasi-particles-to-incoherent hole-carriers crossover in underdoped cuprates
In underdoped cuprates, only a portion of the Fermi surface survives as Fermi
arcs due to pseudogap opening. In hole-doped LaCuO, we have deduced
the "coherence temperature" of quasi-particles on the Fermi arc above
which the broadened leading edge position in angle-integrated photoemission
spectra is shifted away from the Fermi level and the quasi-particle concept
starts to lose its meaning. is found to rapidly increase with hole
doping, an opposite behavior to the pseudogap temperature . The
superconducting dome is thus located below both and , indicating
that the superconductivity emerges out of the coherent Fermionic
quasi-particles on the Fermi arc. remains small in the underdoped
region, indicating that incoherent charge carriers originating from the Fermi
arc are responsible for the apparently metallic transport at high temperatures
Absence of orbital-selective Mott transition in Ca_2-xSr_xRuO4
Quasi-particle spectra of the layer perovskite SrRuO are calculated
within Dynamical Mean Field Theory for increasing values of the on-site Coulomb
energy . At small the planar geometry splits the bands near
into a wide, two-dimensional band and two narrow, nearly
one-dimensional bands. At larger , however, the spectral
distribution of these states exhibit similar correlation features, suggesting a
common metal-insulator transition for all bands at the same critical
.Comment: 4 pages, 4 figure
Phase Change Observed in Ultrathin Ba0.5Sr0.5TiO3 Films by in-situ Resonant Photoemission Spectroscopy
Epitaxial Ba0.5Sr0.5TiO3 thin films were prepared on Nb-doped SrTiO3
(100)substrates by the pulsed laser deposition technique, and were studied by
measuring the Ti 2p - 3d resonant photoemission spectra in the valence-band
region as a function of film thickness, both at room temperature and low
temperature. Our results demonstrated an abrupt variation in the spectral
structures between 2.8 nm (~7 monolayers) and 2.0 nm (~5 monolayers)
Ba0.5Sr0.5TiO3 films, suggesting that there exists a critical thickness for
phase change in the range of 2.0 nm to 2.8 nm. This may be ascribed mainly to
the intrinsic size effects.Comment: 13 pages, 4 figure
- …