2,168 research outputs found

    Potential Profiling of the Nanometer-Scale Charge Depletion Layer in n-ZnO/p-NiO Junction Using Photoemission Spectroscopy

    Full text link
    We have performed a depth-profile analysis of an all-oxide p-n junction diode n-ZnO/p-NiO using photoemission spectroscopy combined with Ar-ion sputtering. Systematic core-level shifts were observed during the gradual removal of the ZnO overlayer, and were interpreted using a simple model based on charge conservation. Spatial profile of the potential around the interface was deduced, including the charge-depletion width of 2.3 nm extending on the ZnO side and the built-in potential of 0.54 eV

    Magnetic Properties of Co-Fe-Ru Alloys in the f.c.c. and h.c.p. Phases(Physics)

    Get PDF
    Measurements have been made of the magnetization, the Fe^ Mossbauer effect, and the crystal structures of Co-rich Co-Fe-Ru alloys. The alloys with f.c.c. structure behave in a typical ferromagnetic way, while those with h.c.p. structure show non-saturation of the magnetization in magnetic fields as high as 80 kG, and they show relatively small magnetic moments per atom and a broad single Mossbauer absorption

    Modulation Doping of a Mott Quantum Well by a Proximate Polar Discontinuity

    Full text link
    We present evidence for hole injection into LaAlO3/LaVO3/LaAlO3 quantum wells near a polar surface of LaAlO3 (001). As the surface is brought in proximity to the LaVO3 layer, an exponential drop in resistance and a decreasing positive Seebeck coefficient is observed below a characteristic coupling length of 10-15 unit cells. We attribute this behavior to a crossover from an atomic reconstruction of the AlO2-terminated LaAlO3 surface to an electronic reconstruction of the vanadium valence. These results suggest a general approach to tunable hole-doping in oxide thin film heterostructures.Comment: 16 pages, 7 figure

    Electronic charges and electric potential at LaAlO3/SrTiO3 interfaces studied by core-level photoemission spectroscopy

    Full text link
    We studied LaAlO3/SrTiO3 interfaces for varying LaAlO3 thickness by core-level photoemission spectroscopy. In Ti 2p spectra for conducting "n-type" interfaces, Ti3+ signals appeared, which were absent for insulating "p-type" interfaces. The Ti3+ signals increased with LaAlO3 thickness, but started well below the critical thickness of 4 unit cells for metallic transport. Core-level shifts with LaAlO3 thickness were much smaller than predicted by the polar catastrophe model. We attribute these observations to surface defects/adsorbates providing charges to the interface even below the critical thickness

    Direct observation of the mass renormalization in SrVO3_3 by angle resolved photoemission spectroscopy

    Full text link
    We have performed an angle-resolved photoemission study of the three-dimensional perovskite-type SrVO3_3. Observed spectral weight distribution of the coherent part in the momentum space shows cylindrical Fermi surfaces consisting of the V 3dd t2gt_{2g} orbitals as predicted by local-density-approximation (LDA) band-structure calculation. The observed energy dispersion shows a moderately enhanced effective mass compared to the LDA results, corresponding to the effective mass enhancement seen in the thermodynamic properties. Contributions from the bulk and surface electronic structures to the observed spectra are discussed based on model calculations.Comment: 5 pages, 5 figure

    Phase Change Observed in Ultrathin Ba0.5Sr0.5TiO3 Films by in-situ Resonant Photoemission Spectroscopy

    Full text link
    Epitaxial Ba0.5Sr0.5TiO3 thin films were prepared on Nb-doped SrTiO3 (100)substrates by the pulsed laser deposition technique, and were studied by measuring the Ti 2p - 3d resonant photoemission spectra in the valence-band region as a function of film thickness, both at room temperature and low temperature. Our results demonstrated an abrupt variation in the spectral structures between 2.8 nm (~7 monolayers) and 2.0 nm (~5 monolayers) Ba0.5Sr0.5TiO3 films, suggesting that there exists a critical thickness for phase change in the range of 2.0 nm to 2.8 nm. This may be ascribed mainly to the intrinsic size effects.Comment: 13 pages, 4 figure

    Gradual Disappearance of the Fermi Surface near the Metal-Insulator Transition in La1x_{1-x}Srx_{x}MnO3_{3}

    Full text link
    We report the first observation of changes in the electronic structure of La1x_{1-x}Srx_{x}MnO3_{3} (LSMO) across the filling-control metal-insulator (MI) transition by means of in situ angle-resolved photoemission spectroscopy (ARPES) of epitaxial thin films. The Fermi surface gradually disappears near the MI transition by transferring the spectral weight from the coherent band near the Fermi level (EFE_{F}) to the lower Hubbard band, whereas a pseudogap behavior also exists in the ARPES spectra in the close vicinity of EFE_{F} for the metallic LSMO. These results indicate that the spectral weight transfer derived from strong electron-electron interaction dominates the gap formation in LSMO associated with the filling-control MI transition.Comment: 11 pages, 4 figure

    In-situ photoemission study of Pr_{1-x}Ca_xMnO_3 epitaxial thin films with suppressed charge fluctuations

    Full text link
    We have performed an {\it in-situ} photoemission study of Pr_{1-x}Ca_xMnO_3 (PCMO) thin films grown on LaAlO_3 (001) substrates and observed the effect of epitaxial strain on the electronic structure. We found that the chemical potential shifted monotonically with doping, unlike bulk PCMO, implying the disappearance of incommensurate charge fluctuations of bulk PCMO. In the valence-band spectra, we found a doping-induced energy shift toward the Fermi level (E_F) but there was no spectral weight transfer, which was observed in bulk PCMO. The gap at E_F was clearly seen in the experimental band dispersions determined by angle-resolved photoemission spectroscopy and could not be explained by the metallic band structure of the C-type antiferromagnetic state, probably due to localization of electrons along the ferromagnetic chain direction or due to another type of spin-orbital ordering.Comment: 5 pages, 4 figure
    corecore