2,649 research outputs found
A Perturbative Study of a General Class of Lattice Dirac Operators
A perturbative study of a general class of lattice Dirac operators is
reported, which is based on an algebraic realization of the Ginsparg-Wilson
relation in the form
where stands for a non-negative integer.
The choice corresponds to the commonly discussed Ginsparg-Wilson relation
and thus to the overlap operator. We study one-loop fermion contributions to
the self-energy of the gauge field, which are related to the fermion
contributions to the one-loop function and to the Weyl anomaly. We
first explicitly demonstrate that the Ward identity is satisfied by the
self-energy tensor. By performing careful analyses, we then obtain the correct
self-energy tensor free of infra-red divergences, as a general consideration of
the Weyl anomaly indicates. This demonstrates that our general operators give
correct chiral and Weyl anomalies. In general, however, the Wilsonian effective
action, which is supposed to be free of infra-red complications, is expected to
be essential in the analyses of our general class of Dirac operators for
dynamical gauge field.Comment: 30 pages. Some of the misprints were corrected. Phys. Rev. D (in
press
Domain wall fermion and CP symmetry breaking
We examine the CP properties of chiral gauge theory defined by a formulation
of the domain wall fermion, where the light field variables and
together with Pauli-Villars fields and are utilized. It is shown
that this domain wall representation in the infinite flavor limit is
valid only in the topologically trivial sector, and that the conflict among
lattice chiral symmetry, strict locality and CP symmetry still persists for
finite lattice spacing . The CP transformation generally sends one
representation of lattice chiral gauge theory into another representation of
lattice chiral gauge theory, resulting in the inevitable change of propagators.
A modified form of lattice CP transformation motivated by the domain wall
fermion, which keeps the chiral action in terms of the Ginsparg-Wilson fermion
invariant, is analyzed in detail; this provides an alternative way to
understand the breaking of CP symmetry at least in the topologically trivial
sector. We note that the conflict with CP symmetry could be regarded as a
topological obstruction. We also discuss the issues related to the definition
of Majorana fermions in connection with the supersymmetric Wess-Zumino model on
the lattice.Comment: 33 pages. Note added and a new reference were added. Phys. Rev.D (in
press
A Schwinger term in q-deformed su(2) algebra
An extra term generally appears in the q-deformed algebra for the
deformation parameter , if one combines the
Biedenharn-Macfarlane construction of q-deformed , which is a
generalization of Schwinger's construction of conventional , with the
representation of the q-deformed oscillator algebra which is manifestly free of
negative norm. This extra term introduced by the requirement of positive norm
is analogous to the Schwinger term in current algebra. Implications of this
extra term on the Bloch electron problem analyzed by Wiegmann and Zabrodin are
briefly discussed.Comment: 9 pages. A couple of clarifying comments have been added. This
modified version has been published in Mod. Phys. Lett.
Generalized Ginsparg-Wilson algebra and index theorem on the lattice
Recent studies of the topological properties of a general class of lattice
Dirac operators are reported. This is based on a specific algebraic realization
of the Ginsparg-Wilson relation in the form
where stands for a non-negative integer.
The choice corresponds to the commonly discussed Ginsparg-Wilson relation
and thus to the overlap operator. It is shown that local chiral anomaly and the
instanton-related index of all these operators are identical. The locality of
all these Dirac operators for vanishing gauge fields is proved on the basis of
explicit construction, but the locality with dynamical gauge fields has not
been established yet. We suggest that the Wilsonian effective action is
essential to avoid infrared singularities encountered in general perturbative
analyses.Comment: 11 pages. Talk given at APCTP-Nankai Joint Symposium on Lattice
Statistics and Mathematical Physics, Tianjin, China, 8-11 October, 2001. To
be published in the Proceedings and in Int. Jour. Mod. Phys.
Phase Operator for the Photon Field and an Index Theorem
An index relation is
satisfied by the creation and annihilation operators and of a
harmonic oscillator. A hermitian phase operator, which inevitably leads to
, cannot be consistently
defined. If one considers an dimensional truncated theory, a hermitian
phase operator of Pegg and Barnett which carries a vanishing index can be
defined. However, for arbitrarily large , we show that the vanishing index
of the hermitian phase operator of Pegg and Barnett causes a substantial
deviation from minimum uncertainty in a characteristically quantum domain with
small average photon numbers. We also mention an interesting analogy between
the present problem and the chiral anomaly in gauge theory which is related to
the Atiyah-Singer index theorem. It is suggested that the phase operator
problem related to the above analytic index may be regarded as a new class of
quantum anomaly. From an anomaly view point ,it is not surprising that the
phase operator of Susskind and Glogower, which carries a unit index, leads to
an anomalous identity and an anomalous commutator.Comment: 32 pages, Late
- …