13 research outputs found

    Spectral hole burning: examples from photosynthesis

    Get PDF
    The optical spectra of photosynthetic pigment–protein complexes usually show broad absorption bands, often consisting of a number of overlapping, ‘hidden’ bands belonging to different species. Spectral hole burning is an ideal technique to unravel the optical and dynamic properties of such hidden species. Here, the principles of spectral hole burning (HB) and the experimental set-up used in its continuous wave (CW) and time-resolved versions are described. Examples from photosynthesis studied with hole burning, obtained in our laboratory, are then presented. These examples have been classified into three groups according to the parameters that were measured: (1) hole widths as a function of temperature, (2) hole widths as a function of delay time and (3) hole depths as a function of wavelength. Two examples from light-harvesting (LH) 2 complexes of purple bacteria are given within the first group: (a) the determination of energy-transfer times from the chromophores in the B800 ring to the B850 ring, and (b) optical dephasing in the B850 absorption band. One example from photosystem II (PSII) sub-core complexes of higher plants is given within the second group: it shows that the size of the complex determines the amount of spectral diffusion measured. Within the third group, two examples from (green) plants and purple bacteria have been chosen for: (a) the identification of ‘traps’ for energy transfer in PSII sub-core complexes of green plants, and (b) the uncovering of the lowest k = 0 exciton-state distribution within the B850 band of LH2 complexes of purple bacteria. The results prove the potential of spectral hole burning measurements for getting quantitative insight into dynamic processes in photosynthetic systems at low temperature, in particular, when individual bands are hidden within broad absorption bands. Because of its high-resolution wavelength selectivity, HB is a technique that is complementary to ultrafast pump–probe methods. In this review, we have provided an extensive bibliography for the benefit of scientists who plan to make use of this valuable technique in their future research

    Improved blood tests for cancer screening: general or specific?

    Get PDF
    Diagnosis of cancer at an early stage leads to improved survival. However, most current blood tests detect single biomarkers that are of limited suitability for screening, and existing screening programmes look only for cancers of one particular type. A new approach is needed. Recent developments suggest the possibility of blood-based screening for multiple tumour types. It may be feasible to develop a high-sensitivity general screen for cancer using multiple proteins and nucleic acids present in the blood of cancer patients, based on the biological characteristics of cancer. Positive samples in the general screen would be submitted automatically for secondary screening using tests to help define the likelihood of cancer and provide some indication of its type. Only those at high risk would be referred for further clinical assessment to permit early treatment and mitigate potential overdiagnosis. While the assays required for each step exist, they have not been used in this way. Recent experience of screening for breast, cervical and ovarian cancers suggest that there is likely to be widespread acceptance of such a strategy

    Is there a world beyond bevacizumab in targeting angiogenesis in glioblastoma?

    No full text
    INTRODUCTION: Antiangiogenic approaches are currently the dominating experimental therapeutic strategy in glioblastoma. First enthusiasm was provoked by promising radiological response rates and an apparent clinical benefit with some of these agents. Major limitations include the modest number of durable responses, the lack of cytotoxic antitumor activity, of synergy when combined with chemotherapy and of an overall survival benefit. AREAS COVERED: We review the rationale as well as preclinical and clinical evidence for the future development of antiangiogenic agents in glioblastoma. The most prominent approach targets VEGF and includes agents such as the VEGF antibody bevacizumab, the VEGF receptor fusion protein aflibercept or the tyrosine kinase inhibitors cediranib and XL-184. Inhibition of angiogenic pathways by small molecules, for example, enzastaurin, or anti-integrin-based approaches, for example, cilengitide, represent alternative strategies. EXPERT OPINION: Enzastaurin and cediranib failed in randomized Phase III trials in recurrent glioblastoma, aflibercept in Phase II. By contrast, bevacizumab was conditionally approved in many countries. Recently completed Phase III trials for bevacizumab and cilengitide in the first-line setting will define the future role of these agents. This intense clinical trial activity reflects the hope that antiangiogenic agents will become part of the limited therapeutic options for glioblastoma
    corecore