19 research outputs found

    Erythropoietin in the intensive care unit: beyond treatment of anemia

    Get PDF
    Erythropoietin (EPO) is the major hormone stimulating the production and differentiation of red blood cells. EPO is used widely for treating anemia of critical illness or anemia induced by chemotherapy. EPO at pharmacological doses is used in this setting to raise hemoglobin levels (by preventing the apoptosis of erythroid progenitor cells) and is designed to reduce patient exposure to allogenic blood through transfusions. Stroke, heart failure, and acute kidney injury are a frequently encountered clinical problem. Unfortunately, in the intensive care unit advances in supportive interventions have done little to reduce the high mortality associated with these conditions. Tissue protection with EPO at high, nonpharmacological doses after injury has been found in the brain, heart, and kidney of several animal models. It is now well known that EPO has anti-apoptotic effects in cells other than erythroid progenitor cells, which is considered to be independent of EPOs erythropoietic activities. This review article summarizes what is known in preclinical models of critical illness and discusses why this does not correlate with randomized, controlled clinical trials

    Erythropoietin: a multimodal neuroprotective agent

    Get PDF
    The tissue protective functions of the hematopoietic growth factor erythropoietin (EPO) are independent of its action on erythropoiesis. EPO and its receptors (EPOR) are expressed in multiple brain cells during brain development and upregulated in the adult brain after injury. Peripherally administered EPO crosses the blood-brain barrier and activates in the brain anti-apoptotic, anti-oxidant and anti-inflammatory signaling in neurons, glial and cerebrovascular endothelial cells and stimulates angiogenesis and neurogenesis. These mechanisms underlie its potent tissue protective effects in experimental models of stroke, cerebral hemorrhage, traumatic brain injury, neuroinflammatory and neurodegenerative disease. The preclinical data in support of the use of EPO in brain disease have already been translated to first clinical pilot studies with encouraging results with the use of EPO as a neuroprotective agent

    Mental stress induces prolonged endothelial dysfunction via endothelin A receptors.

    No full text
    BACKGROUND: Mental stress is a risk factor for atherosclerosis and may precipitate myocardial ischemia and infarction. Because endothelial dysfunction is an early manifestation of atherosclerosis, we investigated the impact of mental stress on endothelial function. Methods and Results- The effects of a 3-minute mental stress task on endothelium-dependent vasodilation were studied in healthy subjects without cardiovascular risk factors. Flow-mediated (FMD) and nitroglycerin (0.4 mg sublingual)-induced vasodilation were studied before and after mental stress by high-resolution ultrasound of the radial artery. Additionally, FMD was assessed before and 10 to 45 minutes after mental stress during intraarterial infusion of a selective endothelin A receptor antagonist (BQ-123, 1 nmol/min) or saline, respectively. Endothelium-dependent vasodilation was reduced by half for about 45 minutes (8.0+/-1.1% versus 4.1+/-1.0%; P<0.002), whereas endothelium-independent vasodilation to nitroglycerin remained unaffected (15.6+/-1.6 versus 14.3+/-1.3%; NS). Intraarterial infusion of BQ-123, a selective endothelin-A receptor antagonist, but not saline prevented the impairment of endothelium-dependent vasodilation (8.6+/-1.2 versus 9.4+/-1.3%; NS). In contrast, intraarterial infusion of norepinephrine of similar duration as mental stress did not inhibit FMD. CONCLUSIONS: Mental stress induces prolonged endothelial dysfunction, which is prevented by selective endothelin-A receptor antagonism. This represents a novel and important link between mental stress and atherosclerotic vascular disease
    corecore