96 research outputs found

    Fibromuscular dysplasia presenting as a renal infarction: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Fibromuscular dysplasia is a non-atherosclerotic, non-inflammatory disease that most commonly affects the renal and internal carotid arteries.</p> <p>Case presentation</p> <p>We present the case of a 44-year-old Caucasian man who was admitted with complaints of loin pain and hypertension. A computed tomography scan of the abdomen revealed a right renal infarction with a nodular aspect of the right renal artery. Subsequent renal angiography revealed a typical 'string of beads' pattern of the right renal artery with thrombus formation. Oral anticoagulation was started and the secondary hypertension was easily controlled with anti-hypertensive drugs. At follow-up, our patient refused percutaneous transluminal renal angioplasty as a definitive treatment.</p> <p>Conclusions</p> <p>Fibromuscular dysplasia is the most common cause of renovascular hypertension in patients under 50 years of age. Presentation with renal infarction is rare.</p> <p>In fibromuscular dysplasia, angioplasty has been proven to have, at least for some indications, an advantage over anti-hypertensive drugs. Therefore, hypertension secondary to fibromuscular dysplasia is the most common cause of curable hypertension.</p

    Recommendations of the Neuroendocrinology Department of the Brazilian Society of Endocrinology and Metabolism for the diagnosis of Cushing’s disease in Brazil

    Full text link

    Multimodality Imaging Review of Multiple Endocrine Neoplasia

    No full text

    Cavernous sinus sampling in patients with Cushing's disease

    No full text

    The role of inferior petrosal sinus sampling in the diagnostic localization of Cushing's disease

    No full text

    Al/Fe isomorphic substitution versus Fe2O3 clusters formation in Fe-doped aluminosilicate nanotubes (imogolite)

    No full text
    Textural, magnetic and spectroscopic properties are reported of Fe-doped aluminosilicate nanotubes (NTs) of the imogolite type, IMO, with nominal composition (OH)3Al2−x Fe x O3SiOH (x = 0, 0.025, 0.050). Samples were obtained by either direct synthesis (Fe-0.025-IMO, Fe-0.050-IMO) or post-synthesis loading (Fe-L-IMO). The Fe content was either 1.4 wt% (both Fe-0.050-IMO and Fe-L-IMO) or 0.7 wt% (Fe-0.025-IMO). Textural properties were characterized by High-Resolution Transmission Electron Microscopy, X-ray diffraction and N2 adsorption/desorption isotherms at 77 K. The presence of different iron species was studied by magnetic moment measurements and three spectroscopies: Mössbauer, UV-Vis and electron paramagnetic resonance, respectively. Fe3+/Al3+ isomorphic substitution (IS) at octahedral sites at the external surface of NTs is the main process occurring by direct synthesis at low Fe loadings, giving rise to the formation of isolated high-spin Fe3+ sites. Higher loadings give rise, besides IS, to the formation of Fe2O3 clusters. IS occurs up to a limit of Al/Fe atomic ratio of ca. 60 (corresponding to x = 0.032). A fraction of the magnetism related to NCs is pinned by the surface anisotropy; also, clusters are magnetically interacting with each other. Post-synthesis loading leads to a system rather close to that obtained by direct synthesis, involving both IS and cluster formations. Slightly larger clusters than with direct synthesis samples, however, are formed. The occurrence of IS indicates a facile cleavage/sealing of Al-O-Al bonds: this opens the possibility to exchange Al3+ ions in pre-formed IMO NTs, a much simpler procedure compared with direct synthesi
    • …
    corecore