83 research outputs found

    Optimization of Volatile Fatty Acids Production for Phas Synthesis from Food Wastes

    Get PDF
    Food wastage is an ethical and environmental wrong practice. Considering a circular economy optic, food waste is a carbon rich substrate, suited for anaerobic fermentation to produce not only biogas, but also highvalue chemical compounds, such as Volatile Fatty Acids (VFAs), that can be recovered in order to synthetize polyhydroxyalkanoates (PHAs). This work represented a step in a larger biorefinery process for food waste treatment, having the aim to explore the production and the profile of VFAs from of three different food waste substrates: Stillage, Condensate and Spent Coffee Ground. The substrates were considered at three different pH conditions (uncontrolled, 7, 12), anaerobically digested in batch reactors for VFAs accumulation. The best VFAs yields belonged to pH 7 tests for all the substrates. The best one on terms of VFAs productivity was Food Stillage with 36.17 gCOD/L of VFAs concentration, corresponding to a VFAs yield of 49.48 % w/w

    Circular economy in the water and wastewater sector: Tariff impact and financial performance of SMARTechs

    Get PDF
    This paper proposes a financial evaluation of the investment in SMARTechs in wastewater companies. SMAR Techs are innovative technologies that enable companies to work toward the circular economy approach, thanks to allowing the development of by-products from wastewater. A simulation of the financial impact of the SMARTech introduction was conducted based on the Italian tariff system. It is performed assuming two different scenarios. These relate to a market’s presence (or absence) for the by-products resulting from the application of SMARTechs. The results show that investing in these technologies provides both financial and environmental benefits

    Biorefinery Gets Hot: Thermophilic Enzymes and Microorganisms for Second-Generation Bioethanol Production

    Get PDF
    To mitigate the current global energy and the environmental crisis, biofuels such as bioethanol have progressively gained attention from both scientific and industrial perspectives. However, at present, commercialized bioethanol is mainly derived from edible crops, thus raising serious concerns given its competition with feed production. For this reason, lignocellulosic biomasses (LCBs) have been recognized as important alternatives for bioethanol production. Because LCBs supply is sustainable, abundant, widespread, and cheap, LCBs-derived bioethanol currently represents one of the most viable solutions to meet the global demand for liquid fuel. However, the cost-effective conversion of LCBs into ethanol remains a challenge and its implementation has been hampered by several bottlenecks that must still be tackled. Among other factors related to the challenging and variable nature of LCBs, we highlight: (i) energy-demanding pretreatments, (ii) expensive hydrolytic enzyme blends, and (iii) the need for microorganisms that can ferment mixed sugars. In this regard, thermophiles represent valuable tools to overcome some of these limitations. Thus, the aim of this review is to provide an overview of the state-of-the-art technologies involved, such as the use of thermophilic enzymes and microorganisms in industrial-relevant conditions, and to propose possible means to implement thermophiles into second-generation ethanol biorefineries that are already in operation

    Microalgae Cultivation on Anaerobic Digestate of Municipal Wastewater, Sewage Sludge and Agro-Waste

    Get PDF
    Microalgae are fast-growing photosynthetic organisms which have the potential to be exploited as an alternative source of liquid fuels to meet growing global energy demand. The cultivation of microalgae, however, still needs to be improved in order to reduce the cost of the biomass produced. Among the major costs encountered for algal cultivation are the costs for nutrients such as CO2, nitrogen and phosphorous. In this work, therefore, different microalgal strains were cultivated using as nutrient sources three different anaerobic digestates deriving from municipal wastewater, sewage sludge or agro-waste treatment plants. In particular, anaerobic digestates deriving from agro-waste or sewage sludge treatment induced a more than 300% increase in lipid production per volume in Chlorella vulgaris cultures grown in a closed photobioreactor, and a strong increase in carotenoid accumulation in different microalgae species. Conversely, a digestate originating from a pilot scale anaerobic upflow sludge blanket (UASB) was used to increase biomass production when added to an artificial nutrient-supplemented medium. The results herein demonstrate the possibility of improving biomass accumulation or lipid production using different anaerobic digestates. \ua9 2016 by the authors; licensee MDPI, Basel, Switzerland

    Polyhydroxyalkanoated-Rich Microbial Cells from Bio-Based Volatile Fatty Acids as Potential Ingredient for Aquaculture Feed

    Get PDF
    In this study, the production of polyhydroxyalkanoated PHA-rich microbial biomass as a novel feed additive in aquaculture was investigated at a lab-scale. Bio-based volatile fatty acids (VFAs), obtained from the acidogenic fermentation of agricultural residues in existing anaerobic digestion plants, were used as carbon and energy to cultivate the PHA-rich microbial biomass. The experimental activities were carried out using Thauera sp. Sel9 as pure strain, which was grown in a continuous stirred-tank reactor (CSTR) operated at three different hydraulic retention times (HRT). The highest productivity obtained of biomass cells was 0.69 g/L day, operating at one day HRT while the observed PHAs production yield was 0.14 gPHA/g soluble COD removed. At these conditions, the PHA concentration in the microbial cells was 41%. Although the sulfur amino acids were available at high concentrations and above the typical concentration found in fishmeal, the amino acids profile of the obtained biomass revealed a lack of histidine and threonine. A preliminary economic analysis showed that the production of a novel source of feed additive from the conversion of agro-residues could give higher benefits in terms of revenues compared to the production of biogas production through anaerobic digestion

    Excellent outcomes of 2G-TKI therapy after imatinib failure in chronic phase CML patients

    Get PDF
    Second-generation tyrosine kinase inhibitors (2G-TKIs) dasatinib and nilotinib produced historical rates of about 50% complete cytogenetic response (CCyR) and about 40% major molecular response (MMR) in chronic myeloid leukaemia (CML) patients failing imatinib. Direct comparisons between dasatinib and nilotinib are lacking, and few studies addressed the dynamics of deep molecular response (DMR) in a "real-life" setting. We retrospectively analyzed 163 patients receiving dasatinib (n= 95) or nilotinib (n= 68) as second-line therapy after imatinib. The two cohorts were comparable for disease's characteristics, although there was a higher rate of dasatinib use in imatinib-resistant and of nilotinib in intolerant patients. Overall, 75% patients not in CCyR and 60% patients not in MMR at 2G-TKI start attained this response. DMR was achieved by 61 patients (37.4%), with estimated rate of stable DMR at 5 years of 24%. After a median follow-up of 48 months, 60% of patients persisted on their second-line treatment. Rates and kinetics of cytogenetic and molecular responses, progression-free and overall survival were similar for dasatinib and nilotinib. In a "real-life" setting, dasatinib and nilotinib resulted equally effective and safe after imatinib failure, determining high rates of CCyR and MMR, and a significant chance of stable DMR, a prerequisite for treatment discontinuation

    Clinical Features, Cardiovascular Risk Profile, and Therapeutic Trajectories of Patients with Type 2 Diabetes Candidate for Oral Semaglutide Therapy in the Italian Specialist Care

    Get PDF
    Introduction: This study aimed to address therapeutic inertia in the management of type 2 diabetes (T2D) by investigating the potential of early treatment with oral semaglutide. Methods: A cross-sectional survey was conducted between October 2021 and April 2022 among specialists treating individuals with T2D. A scientific committee designed a data collection form covering demographics, cardiovascular risk, glucose control metrics, ongoing therapies, and physician judgments on treatment appropriateness. Participants completed anonymous patient questionnaires reflecting routine clinical encounters. The preferred therapeutic regimen for each patient was also identified. Results: The analysis was conducted on 4449 patients initiating oral semaglutide. The population had a relatively short disease duration (42%  60% of patients, and more often than sitagliptin or empagliflozin. Conclusion: The study supports the potential of early implementation of oral semaglutide as a strategy to overcome therapeutic inertia and enhance T2D management

    Recovery of bio-based products from PHA-rich biomass obtained from biowaste: A review

    No full text
    PHAs produced from biowaste are an ecological alternative to petroleum-based plastics. Despite their advantageous characteristics, their commercialisation is limited because the extraction process is still inefficient. This review describes approaches applied to PHA-rich biomass to recover bio-based products beyond their valorisation as bioplastics. The whole PHA-containing microbial cell can be used for animal feed, since PHAs can boost the immune system of the fed animals, and direct extrusion of PHA-rich biomass allows the production of biocomposites. After PHAs extraction, by-products can be recovered to make high-value products such as animal feed, biostimulants, protein hydrolysates, flocculants, adhesives and pharmaceutical. PHAs-rich microbes can also be fed to animals able to excrete PHAs in their faecal pellets, from which they can be easily retrieved. Such approaches have the potential to favour the transition to bioplastics obtained from biowaste streams, thus reducing the environmental impact of plastic production
    corecore