1,897 research outputs found

    Classification and Moduli Kahler Potentials of G_2 Manifolds

    Full text link
    Compact manifolds of G_2 holonomy may be constructed by dividing a seven-torus by some discrete symmetry group and then blowing up the singularities of the resulting orbifold. We classify possible group elements that may be used in this construction and use this classification to find a set of possible orbifold groups. We then derive the moduli Kahler potential for M-theory on the resulting class of G_2 manifolds with blown up co-dimension four singularities.Comment: 30 pages, Latex, references adde

    G_2 Domain Walls in M-theory

    Full text link
    M-theory is considered in its low-energy limit on a G_2 manifold with non-vanishing flux. Using the Killing spinor equations for linear flux, an explicit set of first-order bosonic equations for supersymmetric solutions is found. These solutions describe a warped product of a domain wall in four-dimensional space-time and a deformed G_2 manifold. It is shown how these domain walls arise from the perspective of the associated four-dimensional N=1 effective supergravity theories. We also discuss the inclusion of membrane and M5-brane sources.Comment: 30 pages, Late

    Second-order perturbations of cosmological fluids: Relativistic effects of pressure, multi-component, curvature, and rotation

    Full text link
    We present general relativistic correction terms appearing in Newton's gravity to the second-order perturbations of cosmological fluids. In our previous work we have shown that to the second-order perturbations, the density and velocity perturbation equations of general relativistic zero-pressure, irrotational, single-component fluid in a flat background coincide exactly with the ones known in Newton's theory. Here, we present the general relativistic second-order correction terms arising due to (i) pressure, (ii) multi-component, (iii) background curvature, and (iv) rotation. In case of multi-component zero-pressure, irrotational fluids under the flat background, we effectively do not have relativistic correction terms, thus the relativistic result again coincides with the Newtonian ones. In the other three cases we generally have pure general relativistic correction terms. In case of pressure, the relativistic corrections appear even in the level of background and linear perturbation equations. In the presence of background curvature, or rotation, pure relativistic correction terms directly appear in the Newtonian equations of motion of density and velocity perturbations to the second order. In the small-scale limit (far inside the horizon), relativistic equations including the rotation coincide with the ones in Newton's gravity.Comment: 41 pages, no figur

    A ferromagnet with a glass transition

    Full text link
    We introduce a finite-connectivity ferromagnetic model with a three-spin interaction which has a crystalline (ferromagnetic) phase as well as a glass phase. The model is not frustrated, it has a ferromagnetic equilibrium phase at low temperature which is not reached dynamically in a quench from the high-temperature phase. Instead it shows a glass transition which can be studied in detail by a one step replica-symmetry broken calculation. This spin model exhibits the main properties of the structural glass transition at a solvable mean-field level.Comment: 7 pages, 2 figures, uses epl.cls (included

    Axions In String Theory

    Get PDF
    In the context of string theory, axions appear to provide the most plausible solution of the strong CP problem. However, as has been known for a long time, in many string-based models, the axion coupling parameter F_a is several orders of magnitude higher than the standard cosmological bounds. We re-examine this problem in a variety of models, showing that F_a is close to the GUT scale or above in many models that have GUT-like phenomenology, as well as some that do not. On the other hand, in some models with Standard Model gauge fields supported on vanishing cycles, it is possible for F_a to be well below the GUT scale.Comment: 62 pages, v2; references, acknowledgements and minor corrections adde

    C-axis resistivity and high Tc superconductivity

    Full text link
    Recently we had proposed a mechanism for the normal-state C-axis resistivity of the high-Tc_c layered cuprates that involved blocking of the single-particle tunneling between the weakly coupled planes by strong intra-planar electron-electron scattering. This gave a C-axis resistivity that tracks the ab-plane T-linear resistivity, as observed in the high-temperature limit. In this work this mechanism is examined further for its implication for the ground-state energy and superconductivity of the layered cuprates. It is now argued that, unlike the single-particle tunneling, the tunneling of a boson-like pair between the planes prepared in the BCS-type coherent trial state remains unblocked inasmuch as the latter is by construction an eigenstate of the pair annihilation operator. The resulting pair-delocalization along the C-axis offers energetically a comparative advantage to the paired-up trial state, and, thus stabilizes superconductivity. In this scheme the strongly correlated nature of the layered system enters only through the blocking effect, namely that a given electron is effectively repeatedly monitored (intra-planarly scattered) by the other electrons acting as an environment, on a time-scale shorter than the inter-planar tunneling time. Possible relationship to other inter-layer pairing mechanisms proposed by several workers in the field is also briefly discussed.Comment: typos in equations corrected, contents unchange

    Phases of N=1 USp(2N_c) Gauge Theories with Flavors

    Full text link
    We studied the phase structures of N=1 supersymmetric USp(2N_c) gauge theory with N_f flavors in the fundamental representation as we deformed the N=2 supersymmetric QCD by adding the superpotential for adjoint chiral scalar field. We determined the most general factorization curves for various breaking patterns, for example, the two different breaking patterns of quartic superpotential. We observed all kinds of smooth transitions for quartic superpotential. Finally we discuss the intriguing role of USp(0) in the phase structure and the possible connection with observations made recently in hep-th/0304271 (Aganagic, Intriligator, Vafa and Warner) and in hep-th/0307063 (Cachazo).Comment: 61pp; Improved the presentation, references are added and to appear in PR

    c-axis electrodynamics of ybco

    Full text link
    New measurements of surface impedance in ybco show that the c-axis penetration depth and conductivity below Tc exhibit behaviour different from that observed in the planes. The c-axis penetration depth never has the linear temperature dependence seen in the ab-plane. Instead of the conductivity peak seen in the planes, the c-axis microwave conductivity falls to low values in the superconducting state, then rises slightly below 20K. These results show that c-axis transport remains incoherent below Tc, even though this is one of the least anisotropic cuprate superconductors.Comment: 4-page

    Kaon Condensation and Dynamical Nucleons in Neutron Stars

    Get PDF
    We discuss the nature of the kaon condensation phase transition. We find several features which, if kaons condense in neutron stars, are not only remarkable, but must surely effect such properties as superfluidity and transport properties, which in turn are relevant to the glitch phenomenon and cooling rates of neutron stars. The mixed phase, because of the extensive pressure range that it spans, will occupy a broad radial extent in a neutron star. This region is permeated with microscopic drops (and other configurations) located at lattice sites of one phase immersed in the background of the other phase. The electric charge on drops is opposite to that of the background phase {\sl and} nucleons have a mass approximately a factor two different depending on whether they are in the drops or the background phase. A large part of the stellar interior has this highly non-homogeneous structure.Comment: 5 pages, 6 figures, revtex. Physical Review Letters (accepted
    corecore