916 research outputs found
On the dominance of J(P)=0(+) ground states in even-even nuclei from random two-body interactions
Recent calculations using random two-body interactions showed a preponderance
of J(P)=0(+) ground states, despite the fact that there is no strong pairing
character in the force. We carry out an analysis of a system of identical
particles occupying orbits with j=1/2, 3/2 and 5/2 and discuss some general
features of the spectra derived from random two-body interactions. We show that
for random two-body interactions that are not time-reversal invariant the
dominance of 0(+) states in this case is more pronounced, indicating that
time-reversal invariance cannot be the origin of the 0(+) dominance.Comment: 8 pages, 3 tables and 3 figures. Phys. Rev. C, in pres
Antimicrobial actions of the human epididymis 2 (HE2) protein isoforms, HE2alpha, HE2beta1 and HE2beta2
BACKGROUND: The HE2 gene encodes a group of isoforms with similarities to the antimicrobial beta-defensins. We demonstrated earlier that the antimicrobial activity of HE2 proteins and peptides is salt resistant and structure dependent and involves permeabilization of bacterial membranes. In this study, we further characterize the antimicrobial properties of HE2 peptides in terms of the structural changes induced in E. coli and the inhibition of macromolecular synthesis. METHODS: E. coli treated with 50 micro g/ml of HE2alpha, HE2beta1 or HE2beta2 peptides for 30 and 60 min were visualized using transmission and scanning electron microscopy to investigate the impact of these peptides on bacterial internal and external structure. The effects of HE2alpha, HE2beta1 and HE2beta2 on E. coli macromolecular synthesis was assayed by incubating the bacteria with 2, 10 and 25 micro g/ml of the individual peptides for 0–60 min and measuring the incorporation of the radioactive precursors [methyl-(3)H]thymidine, [5-(3)H]uridine and L-[4,5-(3)H(N)]leucine into DNA, RNA and protein. Statistical analyses using Student's t-test were performed using Sigma Plot software. Values shown are Mean ± S.D. RESULTS: E. coli treated with HE2alpha, HE2beta1 and HE2beta2 peptides as visualized by transmission electron microscopy showed extensive damage characterized by membrane blebbing, thickening of the membrane, highly granulated cytoplasm and appearance of vacuoles in contrast to the smooth and continuous membrane structure of the untreated bacteria. Similarly, bacteria observed by scanning electron microscopy after treating with HE2alpha, HE2beta1 or HE2beta2 peptides exhibited membrane blebbing and wrinkling, leakage of cellular contents, especially at the dividing septa, and external accumulation of fibrous materials. In addition, HE2alpha, HE2beta1 and HE2beta2 peptides inhibited E. coli DNA, RNA and protein synthesis. CONCLUSIONS: The morphological changes observed in E. coli treated with epididymal HE2 peptides provide further evidence for their membrane dependent mechanism of antibacterial action. HE2 C-terminal peptides can inhibit E. coli macromolecular synthesis, suggesting an additional mechanism of bacterial killing supplementary to membrane permeabilization
Identification, cloning and functional characterization of novel beta-defensins in the rat (Rattus norvegicus)
BACKGROUND: beta-defensins are small cationic peptides that exhibit broad spectrum antimicrobial properties. The majority of beta-defensins identified in humans are predominantly expressed in the male reproductive tract and have roles in non-immunological processes such as sperm maturation and capacitation. Characterization of novel defensins in the male reproductive tract can lead to increased understanding of their dual roles in immunity and sperm maturation. METHODS: In silico rat genomic analyses were used to identify novel beta-defensins related to human defensins 118–123. RNAs isolated from male reproductive tract tissues of rat were reverse transcribed and PCR amplified using gene specific primers for defensins. PCR products were sequenced to confirm their identity. RT-PCR analysis was performed to analyze the tissue distribution, developmental expression and androgen regulation of these defensins. Recombinant defensins were tested against E. coli in a colony forming unit assay to analyze their antimicrobial activities. RESULTS: Novel beta-defensins, Defb21, Defb24, Defb27, Defb30 and Defb36 were identified in the rat male reproductive tract. Defb30 and Defb36 were the most restricted in expression, whereas the others were expressed in a variety of tissues including the female reproductive tract. Early onset of defensin expression was observed in the epididymides of 10–60 day old rats. Defb21-Defb36 expression in castrated rats was down regulated and maintained at normal levels in testosterone supplemented animals. DEFB24 and DEFB30 proteins showed potent dose and time dependent antibacterial activity. CONCLUSION: Rat Defb21, Defb24, Defb27, Defb30 and Defb36 are abundantly expressed in the male reproductive tract where they most likely protect against microbial invasion. They are developmentally regulated and androgen is required for full expression in the adult epididymis
Characterization and functions of beta defensins in the epididymis
The epididymal beta-defensins have evolved by repeated gene duplication and divergence to encode a family of proteins that provide direct protection against pathogens and also support the male reproductive tract in its primary function. Male tract defensins also facilitate recovery from pathogen attack. the beta-defensins possess ancient conserved sequence and structural features widespread in multi-cellular organisms, suggesting fundamental roles in species survival. Primate SPAG11, the functional fusion of two ancestrally independent beta-defensin genes, produces a large family of alternatively spliced transcripts that are expressed according to tissue-specific and species-specific constraints. the complexity of SPAG11 varies in different branches of mammalian evolution. Interactions of human SPAG11D with host proteins indicate involvement in multiple signaling pathways.Univ N Carolina, Reprod Biol Lab, Chapel Hill, NC 27599 USAPondicherry Cent Univ, Dept Biochem & Mol Biol, Pondicherry 605014, IndiaUniversidade Federal de São Paulo, Dept Pharmacol, Sect Expt Endocrinol, BR-04044020 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Pharmacol, Sect Expt Endocrinol, BR-04044020 São Paulo, BrazilWeb of Scienc
Identification, cloning and functional characterization of novel sperm associated antigen 11 (SPAG11) isoforms in the rat
BACKGROUND: Sperm binding proteins and their C-terminal peptides of the Sperm Associated Antigen 11 (SPAG11) family were found to play an important role in epididymal innate immunity in addition to their role in sperm maturation. However, the expression of Spag11 transcripts in rodents is not well documented. METHODS: Computational analysis was employed to identify novel Spag11 isoforms in the rat. RT-PCR analyses were carried out on RNAs isolated from the male reproductive tract tissues of rat using gene specific primers for Spag11c and Spag11t. The identities of PCR products were confirmed by sequencing. Tissue distribution, developmental expression and androgen regulation of Spag11t and Spag11c were studied using RT-PCR. The antimicrobial activities of recombinant Spag11t and Spag11c were tested against E coli in a colony forming unit assay. RESULTS: In this study, we identified two novel Spag11 transcripts, namely, Spag11t and Spag11c derived from the long arm of chromosome 16 in the rat (Rattus norvegicus), using both in silico and molecular biology approaches. Spag11c is expressed in all three regions of the epididymis, in testis and in ovary but is absent from the seminal vesicle. Spag11t expression is confined to the caput and it is not expressed in the testis, seminal vesicle or ovary. Age dependent expression of Spag11t and Spag11c was observed in the epididymides of rats (10–60 day old). Their expression was found to be most abundant in the adult rat (60 day) suggesting roles in mature reproductive function. Further, both Spag11t and Spag11c expression was down regulated in castrated rat epididymides and the expression was maintained in the testosterone replaced castrated rats. SPAG11C is a potent antibacterial agent. SPAG11T also displayed bactericidal capacity although weaker than SPAG11C and SPAG11E. CONCLUSION: The abundant expression of Spag11t and Spag11c in the male reproductive tract suggests an important role in male reproductive tract immunity. Their expression is developmentally regulated and androgen dependent. Characterization of novel SPAG11 isoforms will contribute to our understanding of the role of epididymal proteins in sperm maturation and innate immunity
Androgen-dependent Protein Interactions within an Intron 1 Regulatory Region of the 20-kDa Protein Gene
The 20-kDa protein gene is androgen regulated in rat ventral prostate. Intron 1 contains a 130-base pair complex response element (D2) that binds androgen (AR) and glucocorticoid receptor (GR) but transactivates only with AR in transient cotransfection assays in CV1 cells using the reporter vector D2-tkCAT. To better understand the function of this androgen-responsive unit, nuclear protein interactions with D2 were analyzed by DNase I footprinting in ventral prostate nuclei of intact or castrated rats and in vitro with ventral prostate nuclear protein extracts from intact, castrated, and testosterone-treated castrated rats. Multiple androgen-dependent protected regions and hypersensitive sites were identified in the D2 region with both methods. Mobility shift assays with 32P-labeled oligonucleotides spanning D2 revealed specific interactions with ventral prostate nuclear proteins. Four of the D2-protein complexes decreased in intensity within 24 h of castration. UV cross-linking of the androgen-dependent DNA binding proteins identified protein complexes of approximately 140 and 55 kDa. The results demonstrate androgen-dependent nuclear protein-DNA interactions within the complex androgen response element D2
Two-Body Random Ensembles: From Nuclear Spectra to Random Polynomials
The two-body random ensemble (TBRE) for a many-body bosonic theory is mapped
to a problem of random polynomials on the unit interval. In this way one can
understand the predominance of 0+ ground states, and analytic expressions can
be derived for distributions of lowest eigenvalues, energy gaps, density of
states and so forth. Recently studied nuclear spectroscopic properties are
addressed.Comment: 8 pages, 4 figures. To appear in Physical Review Letter
Identification, cloning and functional characterization of novel beta-defensins in the rat (Rattus norvegicus)
Background: beta-defensins are small cationic peptides that exhibit broad spectrum antimicrobial
properties. The majority of beta-defensins identified in humans are predominantly expressed in the
male reproductive tract and have roles in non-immunological processes such as sperm maturation
and capacitation. Characterization of novel defensins in the male reproductive tract can lead to
increased understanding of their dual roles in immunity and sperm maturation.
Methods: In silico rat genomic analyses were used to identify novel beta-defensins related to
human defensins 118–123. RNAs isolated from male reproductive tract tissues of rat were reverse
transcribed and PCR amplified using gene specific primers for defensins. PCR products were
sequenced to confirm their identity. RT-PCR analysis was performed to analyze the tissue
distribution, developmental expression and androgen regulation of these defensins. Recombinant
defensins were tested against E. coli in a colony forming unit assay to analyze their antimicrobial
activities.
Results: Novel beta-defensins, Defb21, Defb24, Defb27, Defb30 and Defb36 were identified in the
rat male reproductive tract. Defb30 and Defb36 were the most restricted in expression, whereas
the others were expressed in a variety of tissues including the female reproductive tract. Early
onset of defensin expression was observed in the epididymides of 10–60 day old rats. Defb21-
Defb36 expression in castrated rats was down regulated and maintained at normal levels in
testosterone supplemented animals. DEFB24 and DEFB30 proteins showed potent dose and time
dependent antibacterial activity.
Conclusion: Rat Defb21, Defb24, Defb27, Defb30 and Defb36 are abundantly expressed in the
male reproductive tract where they most likely protect against microbial invasion. They are
developmentally regulated and androgen is required for full expression in the adult epididymis
Protein Inhibitors of Activated STAT Resemble Scaffold Attachment Factors and Function as Interacting Nuclear Receptor Coregulators
Protein inhibitor of activated STAT1 (PIAS1) functions as a nuclear receptor coregulator and is expressed in several cell types of human testis. However, the mechanism of PIAS1 coregulation is unknown. We report here that PIAS1 has characteristics of a scaffold attachment protein. PIAS1 localized in nuclei in a speckled pattern and bound A-T-rich double-stranded DNA, a function of scaffold attachment proteins in chromatin regions of active transcription. DNA binding was dependent on a 35-amino acid sequence conserved among members of the PIAS family and in scaffold attachment proteins. The PIAS family also bound the androgen receptor DNA binding domain, and binding required the second zinc finger of this domain. PIAS1 contained an intrinsic activation domain but had bi-directional effects on androgen receptor transactivation; lower expression levels inhibited and higher levels increased transactivation in CV1 cells. Other PIAS family members also had dose-dependent effects on transactivation, but they were in a direction opposite to those of PIAS1. When coexpressed with PIAS1, other PIAS family members counteracted PIAS1 coregulation of androgen receptor transactivation. The interaction of PIAS1 with other members of the PIAS family suggests a transcription coregulatory mechanism involving a multicomponent PIAS nuclear scaffold
Characterization and functions of beta defensins in the epididymis
Abstract The epididymal -defensins have evolved by repeated gene duplication and divergence to encode a family of proteins that provide direct protection against pathogens and also support the male reproductive tract in its primary function. Male tract defensins also facilitate recovery from pathogen attack. The -defensins possess ancient conserved sequence and structural features widespread in multi-cellular organisms, suggesting fundamental roles in species survival. Primate SPAG11, the functional fusion of two ancestrally independent -defensin genes, produces a large family of alternatively spliced transcripts that are expressed according to tissue-specific and species-specific constraints. The complexity of SPAG11 varies in different branches of mammalian evolution. Interactions of human SPAG11D with host proteins indicate involvement in multiple signaling pathways
- …