5,025 research outputs found

    Observations of 20 millisecond pulsars in 47 Tucanae at 20 cm

    Get PDF
    We have used a new observing system on the Parkes radio telescope to carry out a series of pulsar observations of the globular cluster 47 Tucanae at 20-cm wavelength. We detected all 11 previously known pulsars, and have discovered nine others, all of which are millisecond pulsars in binary systems. We have searched the data for relatively short orbital period systems, and found one pulsar with an orbital period of 96 min, the shortest of any known radio pulsar. The increased rate of detections with the new system resulted in improved estimates of the flux density of the previously known pulsars, determination of the orbital parameters of one of them, and a coherent timing solution for another one. Five of the pulsars now known in 47 Tucanae have orbital periods of a few hours and implied companion masses of only ~ 0.03 Msun. Two of these are eclipsed at some orbital phases, while three are seen at all phases at 20 cm but not always at lower frequencies. Four and possibly six of the other binary systems have longer orbital periods and companion masses ~ 0.2 Msun, with at least two of them having relatively large orbital eccentricities. All 20 pulsars have rotation periods in the range 2-8 ms.Comment: 15 pages, 6 embedded EPS figures, to be published in The Astrophysical Journa

    Mean curvature flow with triple junctions in higher space dimensions

    Get PDF
    We consider mean curvature flow of n-dimensional surface clusters. At (n-1)-dimensional triple junctions an angle condition is required which in the symmetric case reduces to the well-known 120 degree angle condition. Using a novel parametrization of evolving surface clusters and a new existence and regularity approach for parabolic equations on surface clusters we show local well-posedness by a contraction argument in parabolic Hoelder spaces.Comment: 31 pages, 2 figure

    Semiclassical dynamics of domain walls in the one-dimensional Ising ferromagnet in a transverse field

    Full text link
    We investigate analytically and numerically the dynamics of domain walls in a spin chain with ferromagnetic Ising interaction and subject to an external magnetic field perpendicular to the easy magnetization axis (transverse field Ising model). The analytical results obtained within the continuum approximation and numerical simulations performed for discrete classical model are used to analyze the quantum properties of domain walls using the semiclassical approximation. We show that the domain wall spectrum shows a band structure consisting of 2SS non-intersecting zones.Comment: 15 pages, 9 figure

    Deppining of a Superfluid Vortex Inside a Circular Defect

    Full text link
    In this work we study the process of depinning of a quantum of circulation trapped inside a disk by an applied two dimensional superflow. We use the Gross-Pitaevskii model to describe the neutral superfluid. The collective coordinate dynamics is derived directly from the condensate equation of motion, the nonlinear Schroedinger equation, and it is used to obtain an expression for the critical velocity as a function of the defect radius. This expression is compared with a numerical result obtained from the time independent nonlinear Schroedinger equation. Below the critical velocity, we obtain the dependence of the semiclassical nucleation rate with the flow velocity at infinity. Above the critical velocity, the classical vortex depinning is illustrated with a numerical simulation of the time dependent nonlinear Schroedinger equation.Comment: 8 pages, 5 figures, uses revtex and epsf.st

    Kit para automação laboratorial.

    Get PDF
    bitstream/CNPDIA/10327/1/PA24_98.pd

    PSR J1723-2837: An Eclipsing Binary Radio Millisecond Pulsar

    Full text link
    We present a study of PSR J1723-2837, an eclipsing, 1.86 ms millisecond binary radio pulsar discovered in the Parkes Multibeam survey. Radio timing indicates that the pulsar has a circular orbit with a 15 hr orbital period, a low-mass companion, and a measurable orbital period derivative. The eclipse fraction of ~15% during the pulsar's orbit is twice the Roche lobe size inferred for the companion. The timing behavior is significantly affected by unmodeled systematics of astrophysical origin, and higher-order orbital period derivatives are needed in the timing solution to account for these variations. We have identified the pulsar's (non-degenerate) companion using archival ultraviolet, optical, and infrared survey data and new optical photometry. Doppler shifts from optical spectroscopy confirm the star's association with the pulsar and indicate a pulsar-to-companion mass ratio of 3.3 +/- 0.5, corresponding to a companion mass range of 0.4 to 0.7 Msun and an orbital inclination angle range of between 30 and 41 degrees, assuming a pulsar mass range of 1.4-2.0 Msun. Spectroscopy indicates a spectral type of G for the companion and an inferred Roche-lobe-filling distance that is consistent with the distance estimated from radio dispersion. The features of PSR J1723-2837 indicate that it is likely a "redback" system. Unlike the five other Galactic redbacks discovered to date, PSR J1723-2837 has not been detected as a gamma-ray source with Fermi. This may be due to an intrinsic spin-down luminosity that is much smaller than the measured value if the unmeasured contribution from proper motion is large.Comment: 11 pages, including 8 figures and 5 tables. Accepted by the Astrophysical Journa
    • …
    corecore