116 research outputs found
CAVE: An Open-Source Tool for Combined Analysis of Head-Mounted Calcium Imaging and Behavior in MATLAB
Calcium imaging in freely behaving rodents using head-mounted miniature microscopes is currently becoming an increasingly popular technique in neuroscience. Due to the large amounts of complex data that the technique produces, user friendly software is needed for quick and efficient processing. Here, we present a new tool for analyzing calcium imaging data from head-mounted microscopes together with simultaneously acquired behavioral data: CAVE (Calcium ActiVity Explorer). CAVE bundles a unique set of algorithms specifically tailored to the analysis of single-photon imaging data from awake behaving animals including efficient motion correction and automatic ROI selection with manual audit and refinement. For behavioral analysis, CAVE can automatically track animal position and orientation. Individual behavioral epochs and external events can then be analyzed in correlation to calcium imaging and tracking data. Our program is written in MATLAB, the source code is open source and particularly focuses on providing a streamlined workflow for novice users while also retaining detailed configuration options for advanced users. We evaluate the performance of CAVE by investigating neural activity in hippocampus and somatosensory cortex. The fast analysis provided by CAVE allowed us to track activity in a large set of animals over the course of several months during exploration behavior, detailing the properties of onset and offset of observable activity and the visible cells per imaging location
Auditory Cortical Contrast Enhancing by Global Winner-Take-All Inhibitory Interactions
Brains decompose the world into discrete objects of perception, thereby facing the problem of how to segregate and selectively address similar objects that are concurrently present in a scene. Theoretical models propose that this could be achieved by neuronal implementations of so-called winner-take-all algorithms where neuronal representations of objects or object features interact in a competitive manner. Here we present evidence for the existence of such a mechanism in an animal species. We present electrophysiological, neuropharmacological and neuroanatomical data which suggest a novel view of the role of GABAA-mediated inhibition in primary auditory cortex (AI), where intracortical GABAA-mediated inhibition operates on a global scale within a circular map of sound periodicity representation in AI, with functionally inhibitory projections of similar effect from any location throughout the whole map. These interactions could underlie the proposed competitive “winner-take-all” algorithm to support object segregation, e.g., segregation of different speakers in cocktail-party situations
Normalization of Voltage-Sensitive Dye Signal with Functional Activity Measures
In general, signal amplitude in optical imaging is normalized using the
well-established ΔF/F method, where functional activity is divided by
the total fluorescent light flux. This measure is used both directly, as a
measure of population activity, and indirectly, to quantify spatial and
spatiotemporal activity patterns. Despite its ubiquitous use, the stability and
accuracy of this measure has not been validated for voltage-sensitive dye
imaging of mammalian neocortex in vivo. In this report, we find
that this normalization can introduce dynamic biases. In particular, the
ΔF/F is influenced by dye staining quality, and the ratio is also
unstable over the course of experiments. As methods to record and analyze
optical imaging signals become more precise, such biases can have an
increasingly pernicious impact on the accuracy of findings, especially in the
comparison of cytoarchitechtonic areas, in area-of-activation measurements, and
in plasticity or developmental experiments. These dynamic biases of the
ΔF/F method may, to an extent, be mitigated by a novel method of
normalization, ΔF/ΔFepileptiform. This normalization
uses as a reference the measured activity of epileptiform spikes elicited by
global disinhibition with bicuculline methiodide. Since this normalization is
based on a functional measure, i.e. the signal amplitude of
“hypersynchronized” bursts of activity in the cortical
network, it is less influenced by staining of non-functional elements. We
demonstrate that such a functional measure can better represent the amplitude of
population mass action, and discuss alternative functional normalizations based
on the amplitude of synchronized spontaneous sleep-like activity. These findings
demonstrate that the traditional ΔF/F normalization of voltage-sensitive
dye signals can introduce pernicious inaccuracies in the quantification of
neural population activity. They further suggest that normalization-independent
metrics such as waveform propagation patterns, oscillations in single detectors,
and phase relationships between detector pairs may better capture the biological
information which is obtained by high-sensitivity imaging
Measurement of the Ratio of b Quark Production Cross Sections in Antiproton-Proton Collisions at 630 GeV and 1800 GeV
We report a measurement of the ratio of the bottom quark production cross
section in antiproton-proton collisions at 630 GeV to 1800 GeV using bottom
quarks with transverse momenta greater than 10.75 GeV identified through their
semileptonic decays and long lifetimes. The measured ratio
sigma(630)/sigma(1800) = 0.171 +/- .024 +/- .012 is in good agreement with
next-to-leading order (NLO) quantum chromodynamics (QCD)
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
Selective increase of auditory cortico-striatal coherence during auditory-cued Go/NoGo discrimination learning.
Goal directed behavior and associated learning processes are tightly linked to neuronal activity in the ventral striatum. Mechanisms that integrate task relevant sensory information into striatal processing during decision making and learning are implicitly assumed in current reinforcementmodels, yet they are still weakly understood. To identify the functional activation of cortico-striatal subpopulations of connections during auditory discrimination learning, we trained Mongolian gerbils in a two-way active avoidance task in a shuttlebox to discriminate between falling and rising frequency modulated tones with identical spectral properties. We assessed functional coupling by analyzing the field-field coherence between the auditory cortex and the ventral striatum of animals performing the task. During the course of training, we observed a selective increase of functionalcoupling during Go-stimulus presentations. These results suggest that the auditory cortex functionally interacts with the ventral striatum during auditory learning and that the strengthening of these functional connections is selectively goal-directed
- …