3,199 research outputs found

    Operator Counting and Eigenvalue Distributions for 3D Supersymmetric Gauge Theories

    Full text link
    We give further support for our conjecture relating eigenvalue distributions of the Kapustin-Willett-Yaakov matrix model in the large N limit to numbers of operators in the chiral ring of the corresponding supersymmetric three-dimensional gauge theory. We show that the relation holds for non-critical R-charges and for examples with {\mathcal N}=2 instead of {\mathcal N}=3 supersymmetry where the bifundamental matter fields are nonchiral. We prove that, for non-critical R-charges, the conjecture is equivalent to a relation between the free energy of the gauge theory on a three sphere and the volume of a Sasaki manifold that is part of the moduli space of the gauge theory. We also investigate the consequences of our conjecture for chiral theories where the matrix model is not well understood.Comment: 27 pages + appendices, 5 figure

    Lethal Mutagenesis of Poliovirus Mediated by a Mutagenic Pyrimidine Analogue

    Get PDF
    Lethal mutagenesis is the mechanism of action of ribavirin against poliovirus (PV) and numerous other RNA viruses. However, there is still considerable debate regarding the mechanism of action of ribavirin against a variety of RNA viruses. Here we show by using T7 RNA polymerase mediated production of PV genomic RNA, PV polymerase-catalyzed primer extension and cell-free PV synthesis that a pyrimidine ribonucleoside triphosphate analogue (rPTP) with ambiguous basepairing capacity is an efficient mutagen of the PV genome. The in vitro incorporation properties of rPTP are superior to ribavirin triphosphate. We observed a log-linear relationship between virus titer reduction and the number of rPMP molecules incorporated. A PV genome encoding a high-fidelity polymerase was more sensitive to rPMP incorporation, consistent with diminished mutational robustness of high-fidelity PV. The nucleoside (rP) did not exhibit antiviral activity in cell culture owing to the inability of rP to be converted to rPMP by cellular nucleotide kinases. rP was also a poor substrate for herpes simplex virus thymidine kinase. The block to nucleoside phosphorylation could be bypassed by treatment with the P nucleobase, which exhibited both antiviral activity and mutagenesis, presumably a reflection of rP nucleotide formation by a nucleotide salvage pathway. These studies provide additional support for lethal mutagenesis as an antiviral strategy, suggest that rPMP prodrugs may be highly efficacious antiviral agents, and provide a new tool to determine the sensitivity of RNA virus genomes to mutagenesis as well as interrogation of the impact of mutational load on the population dynamics of these viruses

    Production of eta Mesons in Double Pomeron Exchange

    Full text link
    We estimate the production cross sections for ηc\eta_c and ηb\eta_b mesons via pomeron-pomeron fusion in peripheral heavy-ion collisions. Total and elastic PP cross sections are calculated in an equivalent pomeron approximation.Comment: 9 pages, 3 Postscript figure

    The Kaon BB-parameter with Wilson Fermions

    Full text link
    We calculate the kaon BB-parameter in quenched lattice QCD at β=6.0\beta=6.0 using Wilson fermions at κ=0.154\kappa=0.154 and 0.1550.155. We use two kinds of non-local (``smeared'') sources for quark propagators to calculate the matrix elements between states of definite momentum. The use of smeared sources yields results with much smaller errors than obtained in previous calculations with Wilson fermions. By combining results for p=(0,0,0)\vec p =(0,0,0) and p=(0,0,1)\vec p =(0,0,1), we show that one can carry out the non-perturbative subtraction necessary to remove the dominant lattice artifacts induced by the chiral symmetry breaking term in the Wilson action. Our final results are in good agreement with those obtained using staggered fermions. We also present results for BB-parameters of the ΔI=3/2\Delta I = 3/2 part of the electromagnetic penguin operators, and preliminary results for \bk\ in the presence of two flavors of dynamical quarks.Comment: 39 pages, including 9 PS figures (LA UR-91-3522

    Direct Mediation and Metastable Supersymmetry Breaking for SO(10)

    Full text link
    We examine a metastable N=1\mathcal{N}=1 Macroscopic SO(N) SQCD model of Intriligator, Seiberg and Shih (ISS). We introduce various baryon and meson deformations, including multitrace operators and explore embedding an SO(10) parent of the standard model into two weakly gauged flavour sectors. Direct fundamental messengers and the symmetric pseudo-modulus messenger mediate SUSY breaking to the MSSM. Gaugino and sfermion masses are computed and compared for each deformation type. We also explore reducing the rank of the magnetic quark matrix of the ISS model and find an additional fundamental messenger.Comment: 43 pages, Latex. Version to appear in JHEP

    Supersymmetric Field-Theoretic Models on a Supermanifold

    Get PDF
    We propose the extension of some structural aspects that have successfully been applied in the development of the theory of quantum fields propagating on a general spacetime manifold so as to include superfield models on a supermanifold. We only deal with the limited class of supermanifolds which admit the existence of a smooth body manifold structure. Our considerations are based on the Catenacci-Reina-Teofillatto-Bryant approach to supermanifolds. In particular, we show that the class of supermanifolds constructed by Bonora-Pasti-Tonin satisfies the criterions which guarantee that a supermanifold admits a Hausdorff body manifold. This construction is the closest to the physicist's intuitive view of superspace as a manifold with some anticommuting coordinates, where the odd sector is topologically trivial. The paper also contains a new construction of superdistributions and useful results on the wavefront set of such objects. Moreover, a generalization of the spectral condition is formulated using the notion of the wavefront set of superdistributions, which is equivalent to the requirement that all of the component fields satisfy, on the body manifold, a microlocal spectral condition proposed by Brunetti-Fredenhagen-K\"ohler.Comment: Final version to appear in J.Math.Phy

    Ultracompact HII regions with extended emission: The complete view

    Get PDF
    \ua9 2019 The Author(s). In this paper, we present the results of a morphological study performed on a sample of 28 ultracompact HII (UC HII) regions located near extended free-free emission, using radio continuum (RC) observations at 3.6 cm with the C and D Very Large Array (VLA) configurations, with the aim of determining a direct connection between them. By using previously published observations in B and D VLA configurations, we compiled a final catalogue of 21 UC HII regions directly connected with the surrounding extended emission (EE). The observed morphology of most of the UC HII regions in RC emission is irregular (single- or multipeaked sources) and resembles a classical bubble structure in the Galactic plane with well-defined cometary arcs. RC images superimposed on colour composite Spitzer images reinforce the assignations of direct connection by the spatial coincidence between the UC components and regions of saturated 24 μm emission. We also find that the presence of EE may be crucial to understand the observed infrared excess because an underestimation of ionizing Lyman photons was considered in previous works (e.g. Wood & Churchwell; Kurtz, Churchwell & Wood)

    The first GCT camera for the Cherenkov Telescope Array

    Full text link
    The Gamma Cherenkov Telescope (GCT) is proposed to be part of the Small Size Telescope (SST) array of the Cherenkov Telescope Array (CTA). The GCT dual-mirror optical design allows the use of a compact camera of diameter roughly 0.4 m. The curved focal plane is equipped with 2048 pixels of ~0.2{\deg} angular size, resulting in a field of view of ~9{\deg}. The GCT camera is designed to record the flashes of Cherenkov light from electromagnetic cascades, which last only a few tens of nanoseconds. Modules based on custom ASICs provide the required fast electronics, facilitating sampling and digitisation as well as first level of triggering. The first GCT camera prototype is currently being commissioned in the UK. On-telescope tests are planned later this year. Here we give a detailed description of the camera prototype and present recent progress with testing and commissioning.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Towards the F-Theorem: N=2 Field Theories on the Three-Sphere

    Full text link
    For 3-dimensional field theories with {\cal N}=2 supersymmetry the Euclidean path integrals on the three-sphere can be calculated using the method of localization; they reduce to certain matrix integrals that depend on the R-charges of the matter fields. We solve a number of such large N matrix models and calculate the free energy F as a function of the trial R-charges consistent with the marginality of the superpotential. In all our {\cal N}=2 superconformal examples, the local maximization of F yields answers that scale as N^{3/2} and agree with the dual M-theory backgrounds AdS_4 x Y, where Y are 7-dimensional Sasaki-Einstein spaces. We also find in toric examples that local F-maximization is equivalent to the minimization of the volume of Y over the space of Sasakian metrics, a procedure also referred to as Z-minimization. Moreover, we find that the functions F and Z are related for any trial R-charges. In the models we study F is positive and decreases along RG flows. We therefore propose the "F-theorem" that we hope applies to all 3-d field theories: the finite part of the free energy on the three-sphere decreases along RG trajectories and is stationary at RG fixed points. We also show that in an infinite class of Chern-Simons-matter gauge theories where the Chern-Simons levels do not sum to zero, the free energy grows as N^{5/3} at large N. This non-trivial scaling matches that of the free energy of the gravity duals in type IIA string theory with Romans mass.Comment: 66 pages, 10 figures; v2: refs. added, minor improvement

    From Necklace Quivers to the F-theorem, Operator Counting, and T(U(N))

    Full text link
    The matrix model of Kapustin, Willett, and Yaakov is a powerful tool for exploring the properties of strongly interacting superconformal Chern-Simons theories in 2+1 dimensions. In this paper, we use this matrix model to study necklace quiver gauge theories with {\cal N}=3 supersymmetry and U(N)^d gauge groups in the limit of large N. In its simplest application, the matrix model computes the free energy of the gauge theory on S^3. The conjectured F-theorem states that this quantity should decrease under renormalization group flow. We show that for a simple class of such flows, the F-theorem holds for our necklace theories. We also provide a relationship between matrix model eigenvalue distributions and numbers of chiral operators that we conjecture holds more generally. Through the AdS/CFT correspondence, there is therefore a natural dual geometric interpretation of the matrix model saddle point in terms of volumes of 7-d tri-Sasaki Einstein spaces and some of their 5-d submanifolds. As a final bonus, our analysis gives us the partition function of the T(U(N)) theory on S^3.Comment: 3 figures, 41 pages; v2 minor improvements, refs adde
    corecore