21,951 research outputs found
Kernel dimension reduction in regression
We present a new methodology for sufficient dimension reduction (SDR). Our
methodology derives directly from the formulation of SDR in terms of the
conditional independence of the covariate from the response , given the
projection of on the central subspace [cf. J. Amer. Statist. Assoc. 86
(1991) 316--342 and Regression Graphics (1998) Wiley]. We show that this
conditional independence assertion can be characterized in terms of conditional
covariance operators on reproducing kernel Hilbert spaces and we show how this
characterization leads to an -estimator for the central subspace. The
resulting estimator is shown to be consistent under weak conditions; in
particular, we do not have to impose linearity or ellipticity conditions of the
kinds that are generally invoked for SDR methods. We also present empirical
results showing that the new methodology is competitive in practice.Comment: Published in at http://dx.doi.org/10.1214/08-AOS637 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org
- …