343 research outputs found

    Recent advances on the mechanisms regulating cholangiocyte proliferation and the significance of the neuroendocrine regulation of cholangiocyte pathophysiology

    Get PDF
    Cholangiocytes are epithelial cells lining the biliary epithelium. Cholangiocytes play several key roles in the modification of ductal bile and are also the target cells in chronic cholestatic liver diseases (i.e., cholangiopathies) such as PSC, PBC, polycystic liver disease (PCLD) and cholangiocarcinoma (CCA). During these pathologies, cholangiocytes (which in normal condition are in a quiescent state) begin to proliferate acquiring phenotypes of neuroendocrine cells, and start secreting different cytokines, growth factors, neuropeptides, and hormones to modulate cholangiocytes proliferation and interaction with the surrounding environment, trying to reestablish the balance between proliferation/loss of cholangiocytes for the maintenance of biliary homeostasis. The purpose of this review is to summarize the recent findings on the mechanisms regulating cholangiocyte proliferation and the significance of the neuroendocrine regulation of cholangiocyte pathophysiology. To clarify the mechanisms of action of these factors we will provide new potential strategies for the management of chronic liver diseases

    Contribution of resident stem cells to liver and biliary tree regeneration in human diseases

    Get PDF
    Two distinct stem/progenitor cell populations of biliary origin have been identified in the adult liver and biliary tree. Hepatic Stem/progenitor Cells (HpSCs) are bipotent progenitor cells located within the canals of Hering and can be differentiated into mature hepatocytes and cholangiocytes; Biliary Tree Stem/progenitor Cells (BTSCs) are multipotent stem cells located within the peribiliary glands of large intrahepatic and extrahepatic bile ducts and able to differentiate into hepatic and pancreatic lineages. HpSCs and BTSCs are endowed in a specialized niche constituted by supporting cells and extracellular matrix compounds. The actual contribution of these stem cell niches to liver and biliary tree homeostatic regeneration is marginal; this is due to the high replicative capabilities and plasticity of mature parenchymal cells (i.e., hepatocytes and cholangiocytes). However, the study of human liver and biliary diseases disclosed how these stem cell niches are involved in the regenerative response after extensive and/or chronic injuries, with the activation of specific signaling pathways. The present review summarizes the contribution of stem/progenitor cell niches in human liver diseases, underlining mechanisms of activation and clinical implications, including fibrogenesis and disease progression

    Vasopressin regulates the growth of the biliary epithelium in polycystic liver disease

    Get PDF
    The neurohypophysial hormone arginine vasopressin (AVP) acts by three distinct receptor subtypes: V1a, V1b, and V2. In the liver, AVP is involved in ureogenesis, glycogenolysis, neoglucogenesis and regeneration. No data exist about the presence of AVP in the biliary epithelium. Cholangiocytes are the target cells in a number of animal models of cholestasis, including bile duct ligation (BDL), and in several human pathologies, such as polycystic liver disease characterized by the presence of cysts that bud from the biliary epithelium. In vivo, liver fragments from normal and BDL mice and rats as well as liver samples from normal and ADPKD patients were collected to evaluate: (i) intrahepatic bile duct mass by immunohistochemistry for cytokeratin-19; and (ii) expression of V1a, V1b and V2 by immunohistochemistry, immunofluorescence and real-time PCR. In vitro, small and large mouse cholangiocytes, H69 (non-malignant human cholangiocytes) and LCDE (human cholangiocytes from the cystic epithelium) were stimulated with vasopressin in the absence/presence of AVP antagonists such as OPC-31260 and Tolvaptan, before assessing cellular growth by MTT assay and cAMP levels. Cholangiocytes express V2 receptor that was upregulated following BDL and in ADPKD liver samples. Administration of AVP increased proliferation and cAMP levels of small cholangiocytes and LCDE cells. We found no effect in the proliferation of large mouse cholangiocytes and H69 cells. Increases were blocked by preincubation with the AVP antagonists. These results showed that AVP and its receptors may be important in the modulation of the proliferation rate of the biliary epithelium

    H3 histamine receptor-mediated activation of protein kinase calpha inhibits the growth of cholangiocarcinoma in vitro and in vivo

    Get PDF
    Histamine regulates functions via four receptors (HRH1, HRH2, HRH3, and HRH4). The D-myo-inositol 1,4,5-trisphosphate (IP(3))/Ca(2+)/protein kinase C (PKC)/mitogen-activated protein kinase pathway regulates cholangiocarcinoma growth. We evaluated the role of HRH3 in the regulation of cholangiocarcinoma growth. Expression of HRH3 in intrahepatic and extrahepatic cell lines, normal cholangiocytes, and human tissue arrays was measured. In Mz-ChA-1 cells stimulated with (R)-(alpha)-(-)-methylhistamine dihydrobromide (RAMH), we measured (a) cell growth, (b) IP(3) and cyclic AMP levels, and (c) phosphorylation of PKC and mitogen-activated protein kinase isoforms. Localization of PKC alpha was visualized by immunofluorescence in cell smears and immunoblotting for PKC alpha in cytosol and membrane fractions. Following knockdown of PKC alpha, Mz-ChA-1 cells were stimulated with RAMH before evaluating cell growth and extracellular signal-regulated kinase (ERK)-1/2 phosphorylation. In vivo experiments were done in BALB/c nude mice. Mice were treated with saline or RAMH for 44 days and tumor volume was measured. Tumors were excised and evaluated for proliferation, apoptosis, and expression of PKC alpha, vascular endothelial growth factor (VEGF)-A, VEGF-C, VEGF receptor 2, and VEGF receptor 3. HRH3 expression was found in all cells. RAMH inhibited the growth of cholangiocarcinoma cells. RAMH increased IP(3) levels and PKC alpha phosphorylation and decreased ERK1/2 phosphorylation. RAMH induced a shift in the localization of PKC alpha expression from the cytosolic domain into the membrane region of Mz-ChA-1 cells. Silencing of PKC alpha prevented RAMH inhibition of Mz-ChA-1 cell growth and ablated RAMH effects on ERK1/2 phosphorylation. In vivo, RAMH decreased tumor growth and expression of VEGF and its receptors; PKC alpha expression was increased. RAMH inhibits cholangiocarcinoma growth by PKC alpha-dependent ERK1/2 dephosphorylation. Modulation of PKC alpha by histamine receptors may be important in regulating cholangiocarcinoma growth. (Mol Cancer Res 2009;7(10):1704-13

    Stem/Progenitor Cell Niches Involved in Hepatic and Biliary Regeneration

    Get PDF
    Niches containing stem/progenitor cells are present in different anatomical locations along the human biliary tree and within liver acini. The most primitive stem/progenitors, biliary tree stem/progenitor cells (BTSCs), reside within peribiliary glands located throughout large extrahepatic and intrahepatic bile ducts. BTSCs are multipotent and can differentiate towards hepatic and pancreatic cell fates. These niches’ matrix chemistry and other characteristics are undefined. Canals of Hering (bile ductules) are found periportally and contain hepatic stem/progenitor cells (HpSCs), participating in the renewal of small intrahepatic bile ducts and being precursors to hepatocytes and cholangiocytes. The niches also contain precursors to hepatic stellate cells and endothelia, macrophages, and have a matrix chemistry rich in hyaluronans, minimally sulfated proteoglycans, fetal collagens, and laminin. The microenvironment furnishes key signals driving HpSC activation and differentiation. Newly discovered third niches are pericentral within hepatic acini, contain Axin

    Hepatic progenitor cell activation is influenced by liver macrophages in the progression of non-alcoholic fatty liver disease

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is one of the most important causes of liver-related morbidity in children. In NAFLD, the activation of hepatic progenitor cells (HPC) is a central event in the progression of liver injury (1). The aim of the present study was to evaluate the cross-talk between HPC activation and polarization of liver macrophages in the progression of pediatric NAFLD. 32 children with biopsy-proven NAFLD were included. 20 out of 32 patients were treated with docosahexaenoic acid (DHA) for 18 months and biopsies at the baseline and after 18 months were included (2). HPC activation, macrophage subsets and Wnt/β-catenin pathway was evaluated by immunohistochemistry and immunofluorescence. Our results indicated that in pediatric NAFLD, pro-inflammatory macrophages were the predominant subset. Macrophage activation was correlated with NAFLD Activity Score, HPC activation, and portal fibrosis; DHA treatment determined a macrophage polarization towards an anti-inflammatory phenotype in correlation with the reduction of serum inflammatory cytokines and with the up-regulation of macrophage Wnt3a expression; macrophage Wnt3a expression was correlated with β-catenin phosphorylation in HPCs and signs of commitment towards hepatocyte fate. In conclusion, macrophage activation seems to have a key role in driving HPC response by Wnt3a production in the progression of pediatric NAFLD.This work was supported by grants from MIUR FIRB # RBAP10Z7FS_001 and MIUR PRIN grant # 2009X84L84_001

    Histamine stimulates the proliferation of small and large cholangiocytes by activation of both IP3/Ca2+ and cAMP-dependent signaling mechanisms

    Get PDF
    Although large cholangiocytes exert their functions by activation of cyclic adenosine 3',5'-monophosphate (cAMP), Ca(2+)-dependent signaling regulates the function of small cholangiocytes. Histamine interacts with four receptors, H1-H4HRs. H1HR acts by Gαq activating IP(3)/Ca(2+), whereas H2HR activates Gα(s) stimulating cAMP. We hypothesize that histamine increases biliary growth by activating H1HR on small and H2HR on large cholangiocytes. The expression of H1-H4HRs was evaluated in liver sections, isolated and cultured (normal rat intrahepatic cholangiocyte culture (NRIC)) cholangiocytes. In vivo, normal rats were treated with histamine or H1-H4HR agonists for 1 week. We evaluated: (1) intrahepatic bile duct mass (IBDM); (2) the effects of histamine, H1HR or H2HR agonists on NRIC proliferation, IP(3) and cAMP levels and PKCα and protein kinase A (PKA) phosphorylation; and (3) PKCα silencing on H1HR-stimulated NRIC proliferation. Small and large cholangiocytes express H1-H4HRs. Histamine and the H1HR agonist increased small IBDM, whereas histamine and the H2HR agonist increased large IBDM. H1HR agonists stimulated IP(3) levels, as well as PKCα phosphorylation and NRIC proliferation, whereas H2HR agonists increased cAMP levels, as well as PKA phosphorylation and NRIC proliferation. The H1HR agonist did not increase proliferation in PKCα siRNA-transfected NRICs. The activation of differential signaling mechanisms targeting small and large cholangiocytes is important for repopulation of the biliary epithelium during pathologies affecting different-sized bile ducts

    Biliary tree stem cells are involved in the pathogenesis of primary sclerosing cholangitis

    Get PDF
    Biliary tree stem cells (BTSCs) are multipotent stem cells located in peribiliary glands (PBGs) of extrahepatic and large intrahepatic bile ducts (1). Primary sclerosing cholangitis (PSC) is characterised by fibro-stenosing strictures involving extrahepatic and/or large intrahepatic bile ducts. Mechanisms leading to bile duct injury are poorly understood (2). Our aims are to study the role of BTSC in the pathogenesis of biliary fibrosis in PSC. Specimens containing extrahepatic or large intrahepatic bile ducts were obtained from normal liver (n=6), liver explants from patients with PSC (n=11), and primary biliary cirrhosis (n=6). Specimens were processed for histology, immunohistochemistry and immunofluorescence. In PSC samples, progressive hyperplasia and mucinous metaplasia of PBGs were observed in large ducts with fibrosis, but not in inflamed ducts without fibrosis. PBG hyperplasia was associated with progressive biliary fibrosis and the occurrence of dysplastic lesions. Hyperplasia of PBGs was determined by the expansion of biliary tree stem cells, which sprouted towards the surface epithelium. In PSC, PBGs and myofibroblasts displayed enhanced expression of Hedgehog pathway components. PBGs in ducts with onion skin-like fibrosis expressed epithelial-to-mesenchymal transition traits associated with components of Hedgehog pathway, markers of senescence and autophagy. The biliary tree stem cell compartment is activated in PSC, its activation contributes to biliary fibrosis, and is sustained by the Hedgehog pathway. Our findings suggest a key role for peribiliary glands in the progression of bile duct lesions in PSC and could explain the associated high risk of cholangiocarcinoma. This work was supported by grants from MIUR FIRB 2010 and MIUR PRIN-2009

    Peribiliary gland damage due to liver transplantation involves peribiliary vascular plexus and vascular endothelial growth factor

    Get PDF
    Extrahepatic bile ducts are characterized by the presence of peribiliary glands (PBGs), which represent stem cell niches implicated in biliary regeneration. Orthotopic liver transplantation may be complicated by non-anastomotic strictures (NAS) of the bile ducts, which have been associated with ischemic injury of PBGs and occur more frequently in livers obtained from donors after circulatory death than in those from brain-dead donors. The aims of the present study were to investigate the PBG phenotype in bile ducts after transplantation, the integrity of the peribiliary vascular plexus (PVP) around PBGs, and the expression of vascular endothelial growth factor-A (VEGF-A) by PBGs. Transplanted ducts obtained from patients who underwent liver transplantation were studied (N=62). Controls included explanted bile duct samples not used for transplantation (N=10) with normal histology. Samples were processed for histology, immunohistochemistry and immunofluorescence. Surface epithelium is severely injured in transplanted ducts; PBGs are diffusely damaged, particularly in ducts obtained from circulatory-dead compared to brain-dead donors. PVP is reduced in transplanted compared to controls. PBGs in transplanted ducts contain more numerous progenitor and proliferating cells compared to controls, show higher positivity for VEGF-A compared to controls, and express VEGF receptor-2. In conclusion, PBGs and associated PVP are damaged in transplanted extrahepatic bile ducts; however, an activation of the PBG niche takes place and is characterized by proliferation and VEGF-A expression. This response could have a relevant role in reconstituting biliary epithelium and vascular plexus and could be implicated in the genesis of non-anastomotic strictures

    Gallbladder stem/progenitor cells are able to repopulate and rescue the damaged liver in a experimental mouse model of liver cirrhosis

    Get PDF
    [No abstract available]The human biliary tree contains stem cells within peribiliary glands (Cardinale et al., 2011). Human Gallbladder contains stem/progenitors (hGSCs) located in mucosal crypts (Carpino et al., 2012). Our aim was to evaluate the capability of hGSCs to repopulate and rescue the damaged liver in a model of liver cirrhosis. hGSCs were selected for Epithelial Cell Adhesion Molecule. Cirrhosis was induced by intraperitoneal injection, twice a week, of carbon tetrachloride for 7 weeks. hGSCs were injected into the liver via the spleen of normal or cirrhotic SCID mice. As controls, cirrhotic SCID mice were injected only with the medium or with mature human hepatocytes. 2 months after the injection, the necrotic areas were lower in mice treated with hGSCs in comparison with controls. In hGSCs-injected cirrhotic mice, the expression of the human antigens indicated that ≈10% of the host hepatocyte mass was represented by in vivo differentiated human hepatocytes derived from injected hGSCs. This value was significantly higher with respect to mice injected with human adult hepatocytes. The presence of human cells in murine livers was confirmed by in situ hybridization for human chromosomes. hGSCs injection dictated an improvement of serum liver biochemistry with a significant reduction of transaminases and an improvement of synthetic functions. In this model, hGSC engraftment and differentiation determinate the improvement of histological liver damage and serum liver biochemistry. These data could open future perspectives for a role of gallbladder as a source of stem cells for liver regenerative medicine
    • …
    corecore