4 research outputs found

    Recent Surgical and Medical Advances in the Treatment of Dupuytren’s Disease - A Systematic Review of the Literature

    Get PDF
    Dupuytren’s disease (DD) is a type of fibromatosis which progressively results in the shortening and thickening of the fibrous tissue of the palmar fascia. This condition which predominantly affects white-northern Europeans has been identified since 1614. DD can affect certain activities of daily living such as face washing, combing hair and putting hand in a glove. The origin of Dupuytren’s contracture is still unknown, but there are a number of treatments that doctors have come across throughout the years. Historically surgery has been the mainstay treatment for DD but not the only one. The objective is to make a structured review of the most recent advances in treatment of DD including the surgical and medical interventions. We have looked at the most relevant published articles regarding the various treatment options for DD. This review has taken 55 articles into consideration which have met the inclusion criteria. The most recent treatments used are multi-needle aponeurotomy, extensive percutaneous aponeurotomy and lipografting, injecting collagenase Clostridium histolyticum, INF-gamma and shockwave therapy as well as radiotherapy. Each of these treatments has certain advantages and drawbacks and cannot be used for every patient. In order to prevent this condition, spending more time and money in the topic is required to reach better and more consistent treatments and ultimately to eradicate this disease

    Elevated levels of β-catenin and fibronectin in three-dimensional collagen cultures of Dupuytren's disease cells are regulated by tension in vitro

    Get PDF
    BACKGROUND: Dupuytren's contracture or disease (DD) is a fibro-proliferative disease of the hand that results in the development of scar-like, collagen-rich disease cords within specific palmar fascia bands. Although the molecular pathology of DD is unknown, recent evidence suggests that β-catenin may play a role. In this study, collagen matrix cultures of primary disease fibroblasts show enhanced contraction and isometric tension-dependent changes in β-catenin and fibronectin levels. METHODS: Western blots of β-catenin and fibronectin levels were determined for control and disease primary cell cultures grown within stressed- and attached-collagen matrices. Collagen contraction was quantified, and immunocytochemistry analysis of filamentous actin performed. RESULTS: Disease cells exhibited enhanced collagen contraction activity compared to control cells. Alterations in isometric tension of collagen matrices triggered dramatic changes in β-catenin and fibronectin levels, including a transient increase in β-catenin levels within disease cells, while fibronectin levels steadily decreased to levels below those seen in normal cell cultures. In contrast, both fibronectin and β-catenin levels increased in attached collagen-matrix cultures of disease cells, while control cultures showed only increases in fibronectin levels. Immunocytochemistry analysis also revealed extensive filamentous actin networks in disease cells, and enhanced attachment and spreading of disease cell in collagen matrices. CONCLUSION: Three-dimensional collagen matrix cultures of primary disease cell lines are more contractile and express a more extensive filamentous actin network than patient-matched control cultures. The elevated levels of β-catenin and Fn seen in collagen matrix cultures of disease fibroblasts can be regulated by changes in isometric tension
    corecore