5 research outputs found

    Cooperative Sentry Vehicles And Differential GPS Leapfrog

    Full text link
    As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories Intelligent Systems and Robotics Center is developing and testing the feasibility of using a cooperative team of robotic sentry vehicles to guard a perimeter, perform a surround task, and travel extended distances. This paper describes the authors most recent activities. In particular, this paper highlights the development of a Differential Global Positioning System (DGPS) leapfrog capability that allows two or more vehicles to alternate sending DGPS corrections. Using this leapfrog technique, this paper shows that a group of autonomous vehicles can travel 22.68 kilometers with a root mean square positioning error of only 5 meters

    Development of an Autonomous Quadruped Robot for Robot Entertainment

    No full text
    Abstract. In this paper, we present Robot Entertainment as a new field of the entertainment industry using autonomous robots. For feasibility studies of Robot Entertainment, we have developed an autonomous quadruped robot, named MUTANT, as a pet-type robot. It has four legs, each of which has three degree-of-freedom, and a head which also has three degree-of-freedom. Micro camera, stereo microphone, touch sensors, and other sensor systems are coupled with newly developed behavior generation system, which has emotion module as its major components, and generates high complex and interactive behaviors. Agent architecture, real-world recognition technologies, software component technology, and some dedicated devices such as Micro Camera Unit, were developed and tested for this purpose. From the lessons learned from the development of MUTANT, we refined the design concept of MUTANT to derive requirements for a general architecture and a set of interfaces of robot systems for entertainment applications. Through these feasibility studies, we consider entertainment applications a significant target at this moment from both scientific and engineering points of view.

    Autonomous Mobile Robots: A Distributed Computing Perspective

    No full text
    The distributed coordination and control of a team of autonomous mobile robots is a problem widely studied in a variety of fields, such as engineering, artificial intelligence, artificial life, robotics. Generally, in these areas, the problem is studied mostly from an empirical point of view. Recently, the study of what can be computed by such team of robots has become increasingly popular in theoretical computer science and especially in distributed computing, where it is now an integral part of the investigations on computability by mobile entities [28]. In this paper we describe the current investigations on the algorithmic limitations of what autonomous mobile robots can do with respect to different coordination problems, and overview the main research topics that are gaining attention in this area
    corecore