9 research outputs found

    Association analysis of PON2 genetic variants with serum paraoxonase activity and systemic lupus erythematosus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Low serum paraoxonase (PON) activity is associated with the risk of coronary artery disease, diabetes and systemic lupus erythematosus (SLE). Our prior studies have shown that the <it>PON1</it>/rs662 (p.Gln192Arg), <it>PON1</it>/rs854560 (p.Leu55Met), <it>PON3</it>/rs17884563 and <it>PON3</it>/rs740264 SNPs (single nucleotide polymorphisms) significantly affect serum PON activity. Since <it>PON1, PON2 </it>and <it>PON3 </it>share high degree of structural and functional properties, in this study, we examined the role of <it>PON2 </it>genetic variation on serum PON activity, risk of SLE and SLE-related clinical manifestations in a Caucasian case-control sample.</p> <p>Methods</p> <p><it>PON2 </it>SNPs were selected from HapMap and SeattleSNPs databases by including at least one tagSNP from each bin defined in these resources. A total of nineteen <it>PON2 </it>SNPs were successfully genotyped in 411 SLE cases and 511 healthy controls using pyrosequencing, restriction fragment length polymorphism (RFLP) or TaqMan allelic discrimination methods.</p> <p>Results</p> <p>Our pair-wise linkage disequilibrium (LD) analysis, using an <it>r</it><sup><it>2 </it></sup>cutoff of 0.7, identified 14 <it>PON2 </it>tagSNPs that captured all 19 <it>PON2 </it>variants in our sample, 12 of which were not in high LD with known <it>PON1 </it>and <it>PON3 </it>SNP modifiers of PON activity. Stepwise regression analysis of PON activity, including the known modifiers, identified five <it>PON2 </it>SNPs [rs6954345 (p.Ser311Cys), rs13306702, rs987539, rs11982486, and rs4729189; <it>P </it>= 0.005 to 2.1 × 10<sup>-6</sup>] that were significantly associated with PON activity. We found no association of <it>PON2 </it>SNPs with SLE risk but modest associations were observed with lupus nephritis (rs11981433, rs17876205, rs17876183) and immunologic disorder (rs11981433) in SLE patients (<it>P </it>= 0.013 to 0.042).</p> <p>Conclusions</p> <p>Our data indicate that <it>PON2 </it>genetic variants significantly affect variation in serum PON activity and have modest effects on risk of lupus nephritis and SLE-related immunologic disorder.</p

    Genetic analysis of Paraoxonase (PON1) locus reveals an increased frequency of Arg192 allele in centenarians

    No full text
    Human Paraoxonase (PON1) is a High-Density Lipoprotein (HDL)-associated esterase that hydrolyses lipo-peroxides. PON1 has recently attracted attention as a protective factor against oxidative modification of LDL and may therefore play an important role in the prevention of the atherosclerotic process. Two polymorphisms have been extensively studied: a Leucine (L allele) to Methionine (M allele) substitution at codon 55, and a Glutamine (A allele) to Arginine (B allele) substitution at codon 192. We have examined these two aminoacidic changes in 579 people aged 20 to 65 years old, and 308 centenarians. We found that the percentage of carriers of the B allele at codon 192 (B+ individuals) is higher in centenarians than in controls (0.539 vs 0.447), moreover we found that among the B+ individuals, the phenomenon was due to an increase of people carrying M alleles at codon 55 locus. In conclusion, we propose that genetic variability at PON1 locus affects survival at extreme advanced age
    corecore