7 research outputs found

    Clinical Phenotype in Individuals With Birk-Landau-Perez Syndrome Associated With Biallelic SLC30A9 Pathogenic Variants

    Get PDF
    BACKGROUND AND OBJECTIVES: Birk-Landau-Perez syndrome is a genetic disorder caused by biallelic pathogenic variants in SLC30A9 presenting with a complex movement disorder, developmental regression, oculomotor abnormalities, and renal impairment. It has previously been reported in 2 families. We describe the clinical phenotype of 8 further individuals from 4 unrelated families with SLC30A9-related disease. METHOD: Following detailed clinical phenotyping, 1 family underwent research whole-genome sequencing (WGS), 1 research whole-exome sequencing, and 2 diagnostic WGS. Variants of interest were assessed for pathogenicity using in silico prediction tools, homology modeling, and, where relevant, sequencing of complementary DNA (cDNA) for splicing effect. RESULTS: In 2 unrelated families of Pakistani origin (1 consanguineous and 1 not), the same homozygous missense variant in SLC30A9 (c.1253G>T, p.Gly418Val) was identified. Family 1 included 2 affected brothers, and family 2 one affected boy. In family 3, also consanguineous, there were 4 affected siblings homozygous for the variant c.1049delCAG, pAla350del. The fourth family was nonconsanguineous: the 1 affected individual was compound heterozygous for c.1083dup, p.Val362Cysfs*5, and c.1413A>G, p.Ser471=. Despite phenotypic variability between the 4 families, all affected patients manifested with a progressive hyperkinetic movement disorder, associated with oculomotor apraxia and ptosis. None had evidence of severe renal impairment. For the novel missense variant, the conformation of the loop domain and packing of transmembrane helices are likely to be disrupted based on structure modeling. Its presence in 2 unrelated Pakistani families suggests a possible founder variant. For the synonymous variant p.Ser471=, an effect on splicing was confirmed through cDNA analysis. DISCUSSION: Pathogenic variants in SLC30A9 cause a progressive autosomal recessive neurologic syndrome associated with a complex hyperkinetic movement disorder. Our report highlights the expanding disease phenotype, which can present with a wider spectrum of severity than has previously been recognized

    Genetic, Phenotypic, and Interferon Biomarker Status in ADAR1-Related Neurological Disease

    Get PDF
    We investigated the genetic, phenotypic, and interferon status of 46 patients from 37 families with neurological disease due to mutations in ADAR1. The clinicoradiological phenotype encompassed a spectrum of Aicardi–Goutières syndrome, isolated bilateral striatal necrosis, spastic paraparesis with normal neuroimaging, a progressive spastic dystonic motor disorder, and adult-onset psychological difficulties with intracranial calcification. Homozygous missense mutations were recorded in five families. We observed a p.Pro193Ala variant in the heterozygous state in 22 of 23 families with compound heterozygous mutations. We also ascertained 11 cases from nine families with a p.Gly1007Arg dominant-negative mutation, which occurred de novo in four patients, and was inherited in three families in association with marked phenotypic variability. In 50 of 52 samples from 34 patients, we identified a marked upregulation of type I interferon-stimulated gene transcripts in peripheral blood, with a median interferon score of 16.99 (interquartile range [IQR]: 10.64–25.71) compared with controls (median: 0.93, IQR: 0.57–1.30). Thus, mutations in ADAR1 are associated with a variety of clinically distinct neurological phenotypes presenting from early infancy to adulthood, inherited either as an autosomal recessive or dominant trait. Testing for an interferon signature in blood represents a useful biomarker in this context

    Genetic, Phenotypic, and Interferon Biomarker Status in ADAR1-Related Neurological Disease

    No full text
    We investigated the genetic, phenotypic, and interferon status of 46 patients from 37 families with neurological disease due to mutations in ADAR1. The clinicoradiological phenotype encompassed a spectrum of Aicardi-Goutières syndrome, isolated bilateral striatal necrosis, spastic paraparesis with normal neuroimaging, a progressive spastic dystonic motor disorder, and adult-onset psychological difficulties with intracranial calcification. Homozygous missense mutations were recorded in five families. We observed a p.Pro193Ala variant in the heterozygous state in 22 of 23 families with compound heterozygous mutations. We also ascertained 11 cases from nine families with a p.Gly1007Arg dominant-negative mutation, which occurred de novo in four patients, and was inherited in three families in association with marked phenotypic variability. In 50 of 52 samples from 34 patients, we identified a marked upregulation of type I interferon-stimulated gene transcripts in peripheral blood, with a median interferon score of 16.99 (interquartile range [IQR]: 10.64-25.71) compared with controls (median: 0.93, IQR: 0.57-1.30). Thus, mutations in ADAR1 are associated with a variety of clinically distinct neurological phenotypes presenting from early infancy to adulthood, inherited either as an autosomal recessive or dominant trait. Testing for an interferon signature in blood represents a useful biomarker in this context
    corecore