169 research outputs found
Proinflammatory-activated trigeminal satellite cells promote neuronal sensitization: relevance for migraine pathology.
BACKGROUND: Migraine is a complex, chronic, painful, neurovascular disorder characterized by episodic activation of the trigeminal system. Increased levels of calcitonin gene-related peptide (CGRP) are found at different levels during migraine attacks. Interestingly, CGRP is also released within the trigeminal ganglia suggesting possible local effects on satellite cells, a specialized type of glia that ensheaths trigeminal neurons. CGRP was shown to enhance satellite-cell production of interleukin 1beta (IL-1beta), while trigeminal neurons express an activity-dependent production of nitric oxide (NO). Thus, in the present study we tested the hypothesis that IL-1beta and NO induce trigeminal satellite cell activation, and that once activated these cells can influence neuronal responses.
RESULTS: Primary cultures of rat trigeminal satellite cells isolated from neuronal cultures were characterized in vitro. Cyclooxygenase (COX) expression and activity were taken as a marker of glial pro-inflammatory activation. Most of the experiments were carried out to characterize satellite cell responses to the two different pro-inflammatory stimuli. Subsequently, medium harvested from activated satellite cells was used to test possible modulatory effects of glial factors on trigeminal neuronal activity. IL-1beta and the NO donor diethylenetriamine/nitric oxide (DETA/NO) elevated PGE2 release by satellite cells. The stimulatory effect of IL-1beta was mediated mainly by upregulation of the inducible form of COX enzyme (COX2), while NO increased the constitutive COX activity. Regardless of the activator used, it is relevant that short exposures of trigeminal satellite cells to both activators induced modifications within the cells which led to significant PGE2 production after removal of the pro-inflammatory stimuli. This effect allowed us to harvest medium from activated satellite cells (so-called 'conditioned medium') that did not contain any stimulus, and thus test the effects of glial factors on neuronal activation. Conditioned medium from satellite cells activated by either IL-1beta or NO augmented the evoked release of CGRP by trigeminal neurons.
CONCLUSION: These findings indicate that satellite cells contribute to migraine-related neurochemical events and are induced to do so by autocrine/paracrine stimuli (such as IL-1beta and NO). The responsiveness of IL-1beta to CGRP creates the potential for a positive feedback loop and, thus, a plurality of targets for therapeutic intervention in migraine
Using distinct molecular signatures of human monocytes and dendritic cells to predict adjuvant activity and pyrogenicity of TLR agonists
We present a systematic study that defines molecular profiles of adjuvanticity and pyrogenicity induced by agonists of human Toll-like receptor molecules in vitro. Using P3CSK4, Lipid A and Poly I:C as model adjuvants we show that all three molecules enhance the expansion of IFNγ+/CD4+ T cells from their naïve precursors following priming with allogeneic DC in vitro. In contrast, co-culture of naive CD4+ T cells with allogeneic monocytes and TLR2/TLR4 agonists only resulted in enhanced T cell proliferation. Distinct APC molecular signatures in response to each TLR agonist underline the dual effect observed on T cell responses. Using protein and gene expression assays, we show that TNF-α and CXCL10 represent DC-restricted molecular signatures of TLR2/TLR4 and TLR3 activation, respectively, in sharp contrast to IL-6 produced by monocytes upon stimulation with P3CSK4 and Lipid A. Furthermore, although all TLR agonists are able to up-regulate proIL-1β specific gene in both cell types, only monocyte activation with Lipid A results in detectable IL-1β release. These molecular profiles, provide a simple screen to select new immune enhancers of human Th1 responses suitable for clinical application
Non-invasive measurements of exhaled NO and CO associated with methacholine responses in mice
<p>Abstract</p> <p>Background</p> <p>Nitric oxide (NO) and carbon monoxide (CO) in exhaled breath are considered obtainable biomarkers of physiologic mechanisms. Therefore, obtaining their measures simply, non-invasively, and repeatedly, is of interest, and was the purpose of the current study.</p> <p>Methods</p> <p>Expired NO (E<sub>NO</sub>) and CO (E<sub>CO</sub>) were measured non-invasively using a gas micro-analyzer on several strains of mice (C57Bl6, IL-10<sup>-/-</sup>, A/J, MKK3<sup>-/-</sup>, JNK1<sup>-/-</sup>, NOS-2<sup>-/- </sup>and NOS-3<sup>-/-</sup>) with and without allergic airway inflammation (AI) induced by ovalbumin systemic sensitization and aerosol challenge, compared using independent-sample t-tests between groups, and repeated measures analysis of variance (ANOVA) within groups over time of inflammation induction. E<sub>NO </sub>and E<sub>CO </sub>were also measured in C57Bl6 and IL-10-/- mice, ages 8–58 weeks old, the relationship of which was determined by regression analysis. S-methionyl-L-thiocitrulline (SMTC), and tin protoporphyrin (SnPP) were used to inhibit neuronal/constitutive NOS-1 and heme-oxygenase, respectively, and alter NO and CO production, respectively, as assessed by paired t-tests. Methacholine-associated airway responses (AR) were measured by the enhanced pause method, with comparisons by repeated measures ANOVA and post-hoc testing.</p> <p>Results</p> <p>E<sub>NO </sub>was significantly elevated in naïve IL-10<sup>-/- </sup>(9–14 ppb) and NOS-2<sup>-/- </sup>(16 ppb) mice as compared to others (average: 5–8 ppb), whereas E<sub>CO </sub>was significantly higher in naïve A/J, NOS-3<sup>-/- </sup>(3–4 ppm), and MKK3<sup>-/- </sup>(4–5 ppm) mice, as compared to others (average: 2.5 ppm). As compared to C57Bl6 mice, AR of IL-10<sup>-/-</sup>, JNK1<sup>-/-</sup>, NOS-2<sup>-/-</sup>, and NOS-3<sup>-/- </sup>mice were decreased, whereas they were greater for A/J and MKK3<sup>-/- </sup>mice. SMTC significantly decreased E<sub>NO </sub>by ~30%, but did not change AR in NOS-2<sup>-/- </sup>mice. SnPP reduced E<sub>CO </sub>in C57Bl6 and IL-10<sup>-/- </sup>mice, and increased AR in NOS-2<sup>-/- </sup>mice. E<sub>NO </sub>decreased as a function of age in IL-10<sup>-/- </sup>mice, remaining unchanged in C57Bl6 mice.</p> <p>Conclusion</p> <p>These results are consistent with the ideas that: 1) E<sub>NO </sub>is associated with mouse strain and knockout differences in NO production and AR, 2) alterations of E<sub>NO </sub>and E<sub>CO </sub>can be measured non-invasively with induction of allergic AI or inhibition of key gas-producing enzymes, and 3) alterations in AR may be dependent on the relative balance of NO and CO in the airway.</p
IL-4 Deficiency Is Associated with Mechanical Hypersensitivity in Mice
Interleukin-4 (IL-4) is an anti-inflammatory and analgesic cytokine that induces opioid receptor transcription. We investigated IL-4 knockout (ko) mice to characterize their pain behavior before and after chronic constriction injury (CCI) of the sciatic nerve as a model for neuropathic pain. We investigated opioid responsivity and measured cytokine and opioid receptor gene expression in the peripheral and central nervous system (PNS, CNS) of IL-4 ko mice in comparison with wildtype (wt) mice. Naïve IL-4 ko mice displayed tactile allodynia (wt: 0.45 g; ko: 0.18 g; p<0.001), while responses to heat and cold stimuli and to muscle pressure were not different. No compensatory changes in the gene expression of tumor necrosis factor-alpha (TNF), IL-1β, IL-10, and IL-13 were found in the PNS and CNS of naïve IL-4 ko mice. However, IL-1β gene expression was stronger in the sciatic nerve of IL-4 ko mice (p<0.001) 28 days after CCI and only IL-4 ko mice had elevated IL-10 gene expression (p = 0.014). Remarkably, CCI induced TNF (p<0.01), IL-1β (p<0.05), IL-10 (p<0.05), and IL-13 (p<0.001) gene expression exclusively in the ipsilateral spinal cord of IL-4 ko mice. The compensatory overexpression of the anti-inflammatory and analgesic cytokines IL-10 and IL-13 in the spinal cord of IL-4 ko mice may explain the lack of genotype differences for pain behavior after CCI. Additionally, CCI induced gene expression of μ, κ, and δ opioid receptors in the contralateral cortex and thalamus of IL-4 ko mice, paralleled by fast onset of morphine analgesia, but not in wt mice. We conclude that a lack of IL-4 leads to mechanical sensitivity; the compensatory hyperexpression of analgesic cytokines and opioid receptors after CCI, in turn, protects IL-4 ko mice from enhanced pain behavior after nerve lesion
IL-1β Stimulates COX-2 Dependent PGE2 Synthesis and CGRP Release in Rat Trigeminal Ganglia Cells
OBJECTIVE: Pro-inflammatory cytokines like Interleukin-1 beta (IL-1β) have been implicated in the pathophysiology of migraine and inflammatory pain. The trigeminal ganglion and calcitonin gene-related peptide (CGRP) are crucial components in the pathophysiology of primary headaches. 5-HT1B/D receptor agonists, which reduce CGRP release, and cyclooxygenase (COX) inhibitors can abort trigeminally mediated pain. However, the cellular source of COX and the interplay between COX and CGRP within the trigeminal ganglion have not been clearly identified. METHODS AND RESULTS: 1. We used primary cultured rat trigeminal ganglia cells to assess whether IL-1β can induce the expression of COX-2 and which cells express COX-2. Stimulation with IL-1β caused a dose and time dependent induction of COX-2 but not COX-1 mRNA. Immunohistochemistry revealed expression of COX-2 protein in neuronal and glial cells. 2. Functional significance was demonstrated by prostaglandin E2 (PGE(2)) release 4 hours after stimulation with IL-1β, which could be aborted by a selective COX-2 (parecoxib) and a non-selective COX-inhibitor (indomethacin). 3. Induction of CGRP release, indicating functional neuronal activation, was seen 1 hour after PGE(2) and 24 hours after IL-1β stimulation. Immunohistochemistry showed trigeminal neurons as the source of CGRP. IL-1β induced CGRP release was blocked by parecoxib and indomethacin, but the 5-HT1B/D receptor agonist sumatriptan had no effect. CONCLUSION: We identified a COX-2 dependent pathway of cytokine induced CGRP release in trigeminal ganglia neurons that is not affected by 5-HT1B/D receptor activation. Activation of neuronal and glial cells in the trigeminal ganglion by IL-β leads to an elevated expression of COX-2 in these cells. Newly synthesized PGE(2) (by COX-2) in turn activates trigeminal neurons to release CGRP. These findings support a glia-neuron interaction in the trigeminal ganglion and demonstrate a sequential link between COX-2 and CGRP. The results could help to explain the mechanism of action of COX-2 inhibitors in migraine
- …