43 research outputs found

    The role of Aurora-A inhibitors in cancer therapy

    No full text
    Recently, new chemotherapy agents which target the non-structural components of mitosis have been developed. An important protein involved in several mitotic phases is the Aurora-A protein. By means of the phosphorylation of different substrates, Aurora-A regulates the correct development of the various phases of mitosis. The kinase activity of this protein makes Aurora-A an excellent candidate as an oncogene. The first data of Aurora-A involvement in cancer regarded the identification of Aurora-A overexpression in primary breast and colon tumour samples. With regard to the predictive role of Aurora-A, it has been shown that its overexpression disrupts the spindle checkpoint activated by paclitaxel (Taxol) or nocodazole treatment, thus inducing the cells to become resistant to these drugs. The development therefore of small molecules with an Aurora-A inhibition function may make it possible to reduce or block the oncogenic activity of Aurora-A and in addition may improve the survival of oncological patients showing resistance to paclitaxel or nocodazole treatment. Three novel Aurora kinase inhibitors have recently been described--Hesperadin, ZM447439 and VX-680. All these three drugs have been designed to target the ATP-binding site of Aurora kinase, so they inhibit all three Aurora kinase family members showing a similar phenotype when tested in cell-based assays. Among these three different molecules, VX-680 has shown promising results in in vitro and in vivo studies. In conclusion, it is clear that we are entering a new era in anti-mitotic therapy with the identification and now clinical translation of new targets in mitosis beyond tubulin but many questions remain with regard to Aurora function

    Galileo infrared imaging spectroscopy measurements at venus.

    No full text
    During the 1990 Galileo Venus flyby, the Near Infaied Mapping Spectrometer investigated the night-side atmosphere of Venus in the spectral range 0.7 to 5.2 micrometers. Multispectral images at high spatial resolution indicate substanmial cloud opacity variations in the lower cloud levels, centered at 50 kilometers altitude. Zonal and meridional winds were derived for this level and are consistent with motion of the upper branch of a Hadley cell. Northern and southern hemisphere clouds appear to be markedly different. Spectral profiles were used to derive lower atmosphere abundances of water vapor and other species

    Noble Gases in Lava Rock from Mount Capulin, New Mexico

    No full text
    Noble gases in lava rocks from Mount Capulin crater cone contain parentless 40Ar and xenon trapped from the hot magma. The isotopic composition of the xenon is consistent with a mixture of 90% atmospheric and 10% solar xenon, but no radiogenic 129Xe has been observed. These results do not support an earlier suggestion that radiogenic 129Xe, found in CO2 gas from this region of New Mexico, had been transported in hot magmas
    corecore