45 research outputs found
Recommended from our members
PARAMETRIC EFFECTS OF ANTI-FOAM COMPOSITION, SIMULANT PROPERTIES AND NOBLE METALS ON THE GAS HOLDUP AND RELEASE OF A NON-NEWTONIAN WASTE SLURRY SIMULANT
Gas holdup tests were performed in bench-scale and small-scale mechanically-agitated mixing systems at the Savannah River National Laboratory (SRNL) for a simulant of waste from the Hanford Tank 241-AZ-101. These featured additions of DOW Corning Q2-3183A anti-foam agent. Results indicated that this anti-foam agent (AFA) increased gas holdup in the waste simulant by about a factor of four and, counter-intuitively, that the holdup increased as the non-newtonian simulant shear strength decreased (apparent viscosity decreased). Such results raised the potential of increased flammable gas retention in Hanford Waste Treatment and Immobilization Plant (WTP) vessels mixed by air sparging and pulse-jet mixers (PJMs) during a Design Basis Event (DBE). Additional testing was performed to determine the effects of simulant properties, composition of alternate AFAs, and presence of trace noble metals. Key results are that: (1) Increased gas holdup resulting from addition of Q2-3183A is due to a decrease in surface tension that supports small bubbles which have low rise velocities. (2) Dow Corning 1520-US AFA shows it to be a viable replacement to Dow Corning Q2-3183A AFA. This alternative AFA, however, requires significantly higher dosage for the same anti-foam function. (3) Addition of noble metals to the AZ-101 waste simulant does not produce a catalytic gas retention effect with the AFA
Recommended from our members
EFFECTS OF ALTERNATE ANTIFOAM AGENTS, NOBLE METALS, MIXING SYSTEMS AND MASS TRANSFER ON GAS HOLDUP AND RELEASE FROM NONNEWTONIAN SLURRIES
Gas holdup tests performed in a small-scale mechanically-agitated mixing system at the Savannah River National Laboratory (SRNL) were reported in 2006. The tests were for a simulant of waste from the Hanford Tank 241-AZ-101 and featured additions of DOW Corning Q2-3183A Antifoam agent. Results indicated that this antifoam agent (AFA) increased gas holdup in the waste simulant by about a factor of four and, counter intuitively, that the holdup increased as the simulant shear strength decreased (apparent viscosity decreased). These results raised questions about how the AFA might affect gas holdup in Hanford Waste Treatment and Immobilization Plant (WTP) vessels mixed by air sparging and pulse-jet mixers (PJMs). And whether the WTP air supply system being designed would have the capacity to handle a demand for increased airflow to operate the sparger-PJM mixing systems should the AFA increase retention of the radiochemically generated flammable gases in the waste by making the gas bubbles smaller and less mobile, or decrease the size of sparger bubbles making them mix less effectively for a given airflow rate. A new testing program was developed to assess the potential effects of adding the DOW Corning Q2-3183A AFA to WTP waste streams by first confirming the results of the work reported in 2006 by Stewart et al. and then determining if the AFA in fact causes such increased gas holdup in a prototypic sparger-PJM mixing system, or if the increased holdup is just a feature of the small-scale agitation system. Other elements of the new program include evaluating effects other variables could have on gas holdup in systems with AFA additions such as catalysis from trace noble metals in the waste, determining mass transfer coefficients for the AZ-101 waste simulant, and determining whether other AFA compositions such as Dow Corning 1520-US could also increase gas holdup in Hanford waste. This new testing program was split into two investigations, prototypic sparger-PJM tests and modeling being conducted at the Pacific Northwest National Laboratory (PNNL), and small-scale agitation tests and evaluations of effects waste and AFA ingredients have on gas retention and mass transfer being conducted at SRNL. Only work conducted at SRNL is reported here. Key results are: (1) The unexpected gas holdup behavior reported in 2006 for a small-scale agitation system is confirmed. The gas holdup data from small-scale and bench-scale impeller-type mixing systems reported herein show very different trends than the behavior exhibited by the prototypic sparger-PJM mixing system tested in the PNNL APEL facility. Results obtained from testing this 1/4-scale prototypic mixing system will be reported by PNNL. The reason for this difference in holdup behavior between the two different mixing systems is not known at this time. Consequently, data from the small mechanical agitation systems should not be extrapolated to prototypic plant conditions. (2) Bench-scale and small-scale tests conducted with Dow Corning 1520-US AFA show it to be a viable replacement to Dow Corning Q2-3183A AFA. This alternative AFA will, however, require significantly higher dosage (concentration) to perform the same antifoam function. (3) Addition of noble metals to the AZ-101 waste simulant does not produce a catalytic gas retention effect with the AFA. The Gas holdup is similar whether or not noble metals are present in the AZ-101 simulant. (4) Mass transfer tests were performed in a large (0.76 m diameter) bubble column filled to 1.3, 3.4, and 7.4 m elevations with water and the AZ-101 waste simulant. Mass transfer coefficients for air bubbles emanating from a prototypic 0.051 m diameter sparger were obtained from the transient decay of dissolved oxygen concentration in the initially saturated fluids. Adding AFA to water reduces the mass transfer coefficient slightly. AFA addition reduces the mass transfer coefficient for AZ-101 simulant more than it does for water because the shear strength of the simulant allows for larger bubble sizes, and larger bubbles have smaller surface area for mass transfer than small bubbles for the same void volume
Recommended from our members
Spherical Resorcinol-Formaldehyde Resin for the Removal of Cesium from Hanford Tank Waste
CFD [computational fluid dynamics] And Safety Factors. Computer modeling of complex processes needs old-fashioned experiments to stay in touch with reality.
Computational fluid dynamics (CFD) is recognized as a powerful engineering tool. That is, CFD has advanced over the years to the point where it can now give us deep insight into the analysis of very complex processes. There is a danger, though, that an engineer can place too much confidence in a simulation. If a user is not careful, it is easy to believe that if you plug in the numbers, the answer comes out, and you are done. This assumption can lead to significant errors. As we discovered in the course of a study on behalf of the Department of Energy's Savannah River Site in South Carolina, CFD models fail to capture some of the large variations inherent in complex processes. These variations, or scatter, in experimental data emerge from physical tests and are inadequately captured or expressed by calculated mean values for a process. This anomaly between experiment and theory can lead to serious errors in engineering analysis and design unless a correction factor, or safety factor, is experimentally validated. For this study, blending times for the mixing of salt solutions in large storage tanks were the process of concern under investigation. This study focused on the blending processes needed to mix salt solutions to ensure homogeneity within waste tanks, where homogeneity is required to control radioactivity levels during subsequent processing. Two of the requirements for this task were to determine the minimum number of submerged, centrifugal pumps required to blend the salt mixtures in a full-scale tank in half a day or less, and to recommend reasonable blending times to achieve nearly homogeneous salt mixtures. A full-scale, low-flow pump with a total discharge flow rate of 500 to 800 gpm was recommended with two opposing 2.27-inch diameter nozzles. To make this recommendation, both experimental and CFD modeling were performed. Lab researchers found that, although CFD provided good estimates of an average blending time, experimental blending times varied significantly from the average
Recommended from our members
Entrainment of Solvent in Aqueous Stream from CINC V-5 Contactor
Personnel completed a rapid study of organic entrainment during operation of a CINC V-5 contactor under prototypical conditions covering the range of expected MCU operation. The study only considered the entrainment of organic into the strip acid effluent destined for the Defense Waste Processing Facility. Based on this work, the following observations are noted: (1) Concentrations of total organic from the contactor discharge, based upon modifier measurements, in the acid typically averaged 330 ppm{sub m}, for a range to 190-610 ppm{sub m}. (2) Entrained droplet sizes remained below 18 microns for samples collected at the decanter outlet and below 11 microns for samples taken from the contactor discharge. (3) Scouting tests showed that a vendor coalescer material promotes coalescence of smaller size droplets from the decanter effluent. (4) Personnel observed a previously unreported organic impurity in the solvent used for this study. Additional efforts are needed to ascertain the source of the impurity and its implication on the overall process. (5) Process throughputs and planned operating conditions result in very stable hydraulics, suggesting that the MCU stripping stages will have spare operating capacity. (6) The V-5 contactors show operated with relatively cool surfaces under the planned operating conditions. (7) If operating conditions result in an imbalance of the relative mixing and separation conditions within the contactor, a very stable emulsion may result. In this instance, the emulsion remained stable for weeks. The imbalance in this study resulted from use of improperly sized weir plates. (8) Personnel demonstrated an effective means of recovering emulsified solvent following a non-optimal equipment configuration. The protocols developed may offer benefit for MCU and SWPF operations. (9) This study developed and demonstrated the effectiveness of several analytical methods for support of the Caustic-Side Solvent Extraction process including infrared spectroscopy and droplet size measurement by a MicroTrac{trademark} S3000. Interfacial tension measurements also showed sensitivity to purity of the solvent suggesting that this technique may prove valuable for future process diagnostics. The study highlighted limitations of the current gas chromatography configuration for determination of modifier content of samples. Additional development of analytical methods for determining composition--and particularly modifier content--of organic and mixed aqueous-organic samples is warranted. Infrared spectroscopy shows particular promise. Additional full-scale studies are warranted to investigate the entrainment of organic in the aqueous effluent from the extraction operation. Since waste composition may differ appreciably for the process, this stream may exhibit much wider variance in hydraulic behavior, organic entrainment, and may pose a greater risk for poor hydraulics. Conducting contactor studies at SRNL allowed numerous personnel to view operations and facilitated the training of staff members. Members of the Design Authority, Engineering, and Training groups benefited from tours. Consideration should be given to procuring and installing a full-scale contactor at SRNL for future support and for assistance during commissioning of the MCU. Additional study of surface and interfacial tension is recommended. This tool may also offer economical and rapid process diagnostics for future operations
Narrow-band tunable terahertz emission from ferrimagnetic Mn3-xGa thin films
Narrow-band terahertz emission from coherently excited spin precession in metallic ferrimagnetic Mn3-xGa Heusler alloy nanofilms has been observed. The efficiency of the emission, per nanometer film thickness, is comparable or higher than that of classical laser-driven terahertz sources based on optical rectification. The center frequency of the emission from the films can be tuned precisely via the film composition in the range of 0.20-0.35 THz, making this type of metallic film a candidate for efficient on-chip terahertz emitters. Terahertz emission spectroscopy is furthermore shown to be a sensitive probe of magnetic properties of ultra-thin films. Published by AIP Publishing
Recommended from our members
A multicentre, randomised controlled trial to compare the clinical and cost-effectiveness of Lee Silverman Voice Treatment versus standard NHS Speech and Language Therapy versus control in Parkinson’s disease: a study protocol for a randomised controlled trial
Abstract: Background: Parkinson’s disease (PD) affects approximately 145,519 people in the UK. Speech impairments are common with a reported prevalence of 68%, which increase physical and mental demands during conversation, reliance on family and/or carers, and the likelihood of social withdrawal reducing quality of life. In the UK, two approaches to Speech and Language Therapy (SLT) intervention are commonly available: National Health Service (NHS) SLT or Lee Silverman Voice Treatment (LSVT LOUD®). NHS SLT is tailored to the individuals’ needs per local practice typically consisting of six to eight weekly sessions; LSVT LOUD® comprises 16 sessions of individual treatment with home-based practice over 4 weeks. The evidence-base for their effectiveness is inconclusive. Methods/design: PD COMM is a phase III, multicentre, three-arm, unblinded, randomised controlled trial. Five hundred and forty-six people with idiopathic PD, reporting speech or voice problems will be enrolled. We will exclude those with a diagnosis of dementia, laryngeal pathology or those who have received SLT for speech problems in the previous 2 years. Following informed consent and completion of baseline assessments, participants will be randomised in a 1:1:1 ratio to no-intervention control, NHS SLT or LSVT LOUD® via a central computer-generated programme, using a minimisation procedure with a random element, to ensure allocation concealment. Participants randomised to the intervention groups will start treatment within 4 (NHS SLT) or 7 (LSVT LOUD®) weeks of randomisation. Primary outcome: Voice Handicap Index (VHI) total score at 3 months. Secondary outcomes include: VHI subscales, Parkinson’s Disease Questionnaire-39; Questionnaire on Acquired Speech Disorders; EuroQol-5D-5 L; ICECAP-O; resource utilisation; adverse events and carer quality of life. Mixed-methods process and health economic evaluations will take place alongside the trial. Assessments will be completed before randomisation and at 3, 6 and 12 months after randomisation. The trial started in December 2015 and will run for 77 months. Recruitment will take place in approximately 42 sites around the UK. Discussion: The trial will test the hypothesis that SLT is effective for the treatment of speech or voice problems in people with PD compared to no SLT. It will further test whether NHS SLT or LSVT LOUD® provide greater benefit and determine the cost-effectiveness of both interventions. Trial registration: International Standard Randomised Controlled Trials Number (ISRCTN) Registry, ID: 12421382. Registered on 18 April 2016
Recommended from our members
A multicentre, randomised controlled trial to compare the clinical and cost-effectiveness of Lee Silverman Voice Treatment versus standard NHS Speech and Language Therapy versus control in Parkinson’s disease: a study protocol for a randomised controlled trial
Abstract: Background: Parkinson’s disease (PD) affects approximately 145,519 people in the UK. Speech impairments are common with a reported prevalence of 68%, which increase physical and mental demands during conversation, reliance on family and/or carers, and the likelihood of social withdrawal reducing quality of life. In the UK, two approaches to Speech and Language Therapy (SLT) intervention are commonly available: National Health Service (NHS) SLT or Lee Silverman Voice Treatment (LSVT LOUD®). NHS SLT is tailored to the individuals’ needs per local practice typically consisting of six to eight weekly sessions; LSVT LOUD® comprises 16 sessions of individual treatment with home-based practice over 4 weeks. The evidence-base for their effectiveness is inconclusive. Methods/design: PD COMM is a phase III, multicentre, three-arm, unblinded, randomised controlled trial. Five hundred and forty-six people with idiopathic PD, reporting speech or voice problems will be enrolled. We will exclude those with a diagnosis of dementia, laryngeal pathology or those who have received SLT for speech problems in the previous 2 years. Following informed consent and completion of baseline assessments, participants will be randomised in a 1:1:1 ratio to no-intervention control, NHS SLT or LSVT LOUD® via a central computer-generated programme, using a minimisation procedure with a random element, to ensure allocation concealment. Participants randomised to the intervention groups will start treatment within 4 (NHS SLT) or 7 (LSVT LOUD®) weeks of randomisation. Primary outcome: Voice Handicap Index (VHI) total score at 3 months. Secondary outcomes include: VHI subscales, Parkinson’s Disease Questionnaire-39; Questionnaire on Acquired Speech Disorders; EuroQol-5D-5 L; ICECAP-O; resource utilisation; adverse events and carer quality of life. Mixed-methods process and health economic evaluations will take place alongside the trial. Assessments will be completed before randomisation and at 3, 6 and 12 months after randomisation. The trial started in December 2015 and will run for 77 months. Recruitment will take place in approximately 42 sites around the UK. Discussion: The trial will test the hypothesis that SLT is effective for the treatment of speech or voice problems in people with PD compared to no SLT. It will further test whether NHS SLT or LSVT LOUD® provide greater benefit and determine the cost-effectiveness of both interventions. Trial registration: International Standard Randomised Controlled Trials Number (ISRCTN) Registry, ID: 12421382. Registered on 18 April 2016