16 research outputs found

    Photo-elastic properties of the wing imaginal disc of Drosophila

    Full text link
    In the study of developmental biology, the physical properties and constraints of the developing tissues are of great importance. In spite of this, not much is known about the elastic properties of biologically relevant tissues that are studied in biology labs. Here, we characterize properties of the wing imaginal disc of Drosophila, which is a precursor organ intensely studied in the framework of growth control and cell polarity. In order to determine the possibility of measuring mechanical stresses inside the tissue during development, we quantify the photo-elastic properties of the tissue by direct mechanical manipulation. We obtain a photo-elastic constant of [Formula: see text]

    Self-Assembly and Tissue Fusion of Toroid-Shaped Minimal Building Units

    No full text
    A significant challenge of tissue engineering is to build tissues whose size is not limited by diffusion. We are investigating the use of scaffold-free lumen containing toroid-shaped microtissues as minimal building units. Monodispersed H35 cells, a rat hepatocyte cell line, were seeded onto micromolded agarose, forming self-assembled multicellular toroids within 48 h. Toroid and lumen diameter were easily controlled by micromold design, and toroid thickness was controlled by seeding density. When harvested, toroids were stable, but underwent predictable changes over time with their lumens narrowing. When brought into contact, these building units fused in the x–y plane, forming a double-lumen structure, as well as the z plane, forming a tubular structure, which completed within 72 h. Large, multi-luminal structures were assembled by multidimensional fusion of many toroids. Toroid settling was not entirely random, with most toroids lying flat with their lumens oriented along the z axis. The rapid production of toroid building units of controlled dimension and lumen size that undergo predictable changes and that can be fused to form larger structures is a step closer to tissue engineering large porous three-dimensional tissues with high cell density

    Front Instabilities and Invasiveness of Simulated Avascular Tumors

    No full text
    corecore