6,465 research outputs found

    Origin of the approximate universality of distributions in equilibrium correlated systems

    Get PDF
    We propose an interpretation of previous experimental and numerical experiments, showing that for a large class of systems, distributions of global quantities are similar to a distribution originally obtained for the magnetization in the 2D-XY model . This approach, developed for the Ising model, is based on previous numerical observations. We obtain an effective action using a perturbative method, which successfully describes the order parameter fluctuations near the phase transition. This leads to a direct link between the D-dimensional Ising model and the XY model in the same dimension, which appears to be a generic feature of many equilibrium critical systems and which is at the heart of the above observations.Comment: To appear in Europhysics Letter

    De Haas-van Alphen oscillations in the compensated organic metal alpha-'pseudo-kappa'-(ET)4H3O[Fe(C2O4)3].(C6H4Br2)

    Full text link
    Field-, temperature- and angle-dependent Fourier amplitude of de Haas-van Alphen (dHvA) oscillations are calculated for compensated two-dimensional (2D) metals with textbook Fermi surface (FS) composed of one hole and two electron orbits connected by magnetic breakdown. It is demonstrated that, taking into account the opposite sign of electron and hole orbits, a given Fourier component involves combination of several orbits, the contribution of which must be included in the calculations. Such FS is observed in the strongly 2D organic metal alpha-'pseudo-kappa'-(ET)4H3O[Fe(C2O4)3].(C6H4Br2), dHvA oscillations of which have been studied up to 55 T for various directions of the magnetic field with respect to the conducting plane. Calculations are in good quantitative agreement with the data.Comment: European Physical Journal B (2014

    Onsager phase factor of quantum oscillations in the organic metal theta-(BEDT-TTF)4CoBr4(C6H4Cl2)

    Full text link
    De Haas-van Alphen oscillations are studied for Fermi surfaces illustrating the Pippard's model, commonly observed in multiband organic metals. Field- and temperature-dependent amplitude of the various Fourier components, linked to frequency combinations arising from magnetic breakdown between different bands, are considered. Emphasis is put on the Onsager phase factor of these components. It is demonstrated that, in addition to the usual Maslov index, field-dependent phase factors must be considered to precisely account for the data at high magnetic field. We present compelling evidence of the existence of such contributions for the organic metal theta-(BEDT-TTF)4CoBr4(C6H4Cl2)

    On Critical Velocities in Exciton Superfluidity

    Full text link
    The presence of exciton phonon interactions is shown to play a key role in the exciton superfluidity. We apply the Landau criterion for an exciton-phonon condensate moving uniformly at zero temperature. It turns out that there are essentially two critical velocities in the theory. Within the range of these velocities the condensate can exist only as a bright soliton. The excitation spectrum and differential equations for the wave function of this condensate are derived.Comment: 7 pages, Latex; to be published in Phys.Rev.Lett (1997

    Thermalisation time and specific heat of neutron stars crust

    Full text link
    We discuss the thermalisation process of the neutron stars crust described by solving the heat transport equation with a microscopic input for the specific heat of baryonic matter. The heat equation is solved with initial conditions specific to a rapid cooling of the core. To calculate the specific heat of inner crust baryonic matter, i.e., nuclear clusters and unbound neutrons, we use the quasiparticle spectrum provided by the Hartree-Fock-Bogoliubov approach at finite temperature. In this framework we analyse the dependence of the crust thermalisation on pairing properties and on cluster structure of inner crust matter. It is shown that the pairing correlations reduce the crust thermalisation time by a very large fraction. The calculations show also that the nuclear clusters have a non-negligible influence on the time evolution of the surface temperature of the neutron star.Comment: 7 pages, 5 figures, submitted to Phys. Rev.

    Structural network heterogeneities and network dynamics: a possible dynamical mechanism for hippocampal memory reactivation

    Full text link
    The hippocampus has the capacity for reactivating recently acquired memories [1-3] and it is hypothesized that one of the functions of sleep reactivation is the facilitation of consolidation of novel memory traces [4-11]. The dynamic and network processes underlying such a reactivation remain, however, unknown. We show that such a reactivation characterized by local, self-sustained activity of a network region may be an inherent property of the recurrent excitatory-inhibitory network with a heterogeneous structure. The entry into the reactivation phase is mediated through a physiologically feasible regulation of global excitability and external input sources, while the reactivated component of the network is formed through induced network heterogeneities during learning. We show that structural changes needed for robust reactivation of a given network region are well within known physiological parameters [12,13].Comment: 16 pages, 5 figure

    An Integrated CVaR and Real Options Approach to Investments in the Energy Sector

    Get PDF
    The objective of this paper is to combine a real options framework with portfolio optimization techniques and to apply this new framework to investments in the electricity sector. In particular, a real options model is used to assess the adoption decision of particular technologies under uncertainty. These technologies are coal-fired power plants, biomass-fired power plants and onshore wind mills, and they are representative of technologies based on fossil fuels, biomass and renewables, respectively. The return distributions resulting from this analysis are then used as an input to a portfolio optimization, where the measure of risk is the Conditional Value-at-Risk (CVaR)
    corecore