861 research outputs found
Getting a grip at the edge: recolonization and introgression in eastern Pacific Porites corals
© 2016 John Wiley & Sons Ltd Aim: To infer species identity, population isolation, and geographical variation in inter-specific hybridization among corals of the genus Porites from the central and eastern tropical Pacific, with a focus on the timing of separation between populations of P. evermanni and P. lobata divided by the Eastern Pacific Barrier. Location: Hawaii, American Samoa, Panama and the Galapagos Islands of Ecuador. Methods: Maximum likelihood gene trees were obtained for mitochondrial DNA (COI), the internal transcribed spacer (ITS), and 5 single-copy nuclear (scn) gene regions. Allelic networks were used to group multi-locus scn data into species clusters despite some allele sharing. Coalescent analyses (IMa2) of the 5 scn markers were used to estimate the time of population divergence and test for introgression between P. evermanni and P. lobata. Results: Allelic networks based on scn gene sequences agreed with mtCOI and ITS designations. Divergence times between Hawaiian and eastern Pacific populations are consistent with an early Pleistocene recolonization of the eastern Pacific by P. evermanni followed by a more recent arrival of P. lobata. The two species were fully isolated in Hawaii/American Samoa populations, but introgression from P. evermanni into P. lobata was evident in the eastern Pacific. Main conclusions: These results are consistent with a scenario where a bout of introgression with P. evermanni, an early-arriving colonizer of the eastern Pacific suited to marginal environmental conditions, facilitated the later colonization of the more sensitive P. lobata
Diversity and Relatedness Enhance Survival in Colour Polymorphic Grasshoppers
Evolutionary theory predicts that different resource utilization and behaviour by alternative phenotypes may reduce competition and enhance productivity and individual performance in polymorphic, as compared with monomorphic, groups of individuals. However, firm evidence that members of more heterogeneous groups benefit from enhanced survival has been scarce or lacking. Furthermore, benefits associated with phenotypic diversity may be counterbalanced by costs mediated by reduced relatedness, since closely related individuals typically are more similar. Pygmy grasshoppers (Tetrix subulata) are characterized by extensive polymorphism in colour pattern, morphology, behaviour and physiology. We studied experimental groups founded by different numbers of mothers and found that survival was higher in low than in high density, that survival peaked at intermediate colour morph diversity in high density, and that survival was independent of diversity in low density where competition was less intense. We further demonstrate that survival was enhanced by relatedness, as expected if antagonistic and competitive interactions are discriminately directed towards non-siblings. We therefore also performed behavioural observations and staged encounters which confirmed that individuals recognized and responded differently to siblings than to non-siblings. We conclude that negative effects associated with competition are less manifest in diverse groups, that there is conflicting selection for and against genetic diversity occurring simultaneously, and that diversity and relatedness may facilitate the productivity and ecological success of groups of interacting individuals
Coupling between feedback loops in autoregulatory networks affects bistability range, open-loop gain and switching times
Biochemical regulatory networks governing diverse cellular processes such as stress-response,
differentiation and cell cycle often contain coupled feedback loops. We aim at understanding
how features of feedback architecture, such as the number of loops, the sign of the loops and
the type of their coupling, affect network dynamical performance. Specifically, we investigate
how bistability range, maximum open-loop gain and switching times of a network with
transcriptional positive feedback are affected by additive or multiplicative coupling with
another positive- or negative-feedback loop. We show that a network's bistability range is
positively correlated with its maximum open-loop gain and that both quantities depend on the
sign of the feedback loops and the type of feedback coupling. Moreover, we find that the
addition of positive feedback could decrease the bistability range if we control the basal level
in the signal-response curves of the two systems. Furthermore, the addition of negative
feedback has the capacity to increase the bistability range if its dissociation constant is much
lower than that of the positive feedback. We also find that the addition of a positive feedback to
a bistable network increases the robustness of its bistability range, whereas the addition of a
negative feedback decreases it. Finally, we show that the switching time for a transition from a
high to a low steady state increases with the effective fold change in gene regulation. In
summary, we show that the effect of coupled feedback loops on the bistability range and
switching times depends on the underlying mechanistic details
Glycosylation of Twisted Gastrulation is Required for BMP Binding and Activity during Craniofacial Development
Twisted gastrulation (TWSG1) is a conserved, secreted glycoprotein that modulates signaling of bone morphogenetic proteins (BMPs) in the extracellular space. Deletion of exon 4 of mouse Twsg1 (mTwsg1) is associated with significant craniofacial defects. However, little is understood about the biochemical properties of the corresponding region of the protein. We have uncovered a significant role for exon 4 sequences as encoding the only two glycosylation sites of the mTWSG1 protein. Deletion of the entire exon 4 or mutation of both glycosylation sites within exon 4 abolishes glycosylation of mTWSG1. Importantly, we find that constructs with mutated glycosylation sites have significantly reduced BMP binding activity. We further show that glycosylation and activity of TWSG1 recombinant proteins vary markedly by cellular source. Non-glycosylated mTWSG1 made in E. coli has both reduced affinity for BMPs, as shown by surface plasmon resonance analysis, and reduced BMP inhibitory activity in a mandibular explant culture system compared to glycosylated proteins made in insect cells or murine myeloma cells. This study highlights an essential role for glycosylation in Twisted gastrulation action
Crumpling a Thin Sheet
Crumpled sheets have a surprisingly large resistance to further compression.
We have studied the crumpling of thin sheets of Mylar under different loading
conditions. When placed under a fixed compressive force, the size of a crumpled
material decreases logarithmically in time for periods up to three weeks. We
also find hysteretic behavior when measuring the compression as a function of
applied force. By using a pre-treating protocol, we control this hysteresis and
find reproducible scaling behavior for the size of the crumpled material as a
function of the applied force.Comment: revtex 4 pages, 6 eps figures submitted to Phys Rev. let
Camouflage Effects of Various Colour-Marking Morphs against Different Microhabitat Backgrounds in a Polymorphic Pygmy Grasshopper Tetrix japonica
Colour-marking polymorphism is widely distributed among cryptic species. To account for the adaptive significance of such polymorphisms, several hypotheses have been proposed to date. Although these hypotheses argue over the degree of camouflage effects of marking morphs (and the interactions between morphs and their microhabitat backgrounds), as far as we know, most empirical evidence has been provided under unnatural conditions (i.e., using artificial prey).Tetrix japonica, a pygmy grasshopper, is highly polymorphic in colour-markings and occurs in both sand and grass microhabitats. Even within a microhabitat, T. japonica is highly polymorphic. Using humans as dummy predators and printed photographs in which various morphs of grasshoppers were placed against different backgrounds, we addressed three questions to test the neutral, background heterogeneity, and differential crypsis hypotheses in four marking-type morphs: 1) do the morphs differ in the degree of crypsis in each microhabitat, 2) are different morphs most cryptic in specific backgrounds of the microhabitats, and 3) does the morph frequency reflect the degree of crypsis?The degree of camouflage differed among the four morphs; therefore, the neutral hypothesis was rejected. Furthermore, the order of camouflage advantage among morphs differed depending on the two types of backgrounds (sand and grass), although the grass background consistently provided greater camouflage effects. Thus, based on our results, we could not reject the background heterogeneity hypothesis. Under field conditions, the more cryptic morphs comprised a minority of the population. Overall, our results demonstrate that the different morphs were not equivalent in the degree of crypsis, but the degree of camouflage of the morphs was not consistent with the morph frequency. These findings suggest that trade-offs exist between the camouflage benefit of body colouration and other fitness components, providing a better understanding of the adaptive significance of colour-markings and presumably supporting the differential crypsis hypothesis
Conformational Mechanics of Polymer Adsorption Transitions at Attractive Substrates
Conformational phases of a semiflexible off-lattice homopolymer model near an
attractive substrate are investigated by means of multicanonical computer
simulations. In our polymer-substrate model, nonbonded pairs of monomers as
well as monomers and the substrate interact via attractive van der Waals
forces. To characterize conformational phases of this hybrid system, we analyze
thermal fluctuations of energetic and structural quantities, as well as
adequate docking parameters. Introducing a solvent parameter related to the
strength of the surface attraction, we construct and discuss the
solubility-temperature phase diagram. Apart from the main phases of adsorbed
and desorbed conformations, we identify several other phase transitions such as
the freezing transition between energy-dominated crystalline low-temperature
structures and globular entropy-dominated conformations.Comment: 13 pages, 15 figure
Genetics of callous-unemotional behavior in children
Callous-unemotional behavior (CU) is currently under consideration as a subtyping index for conduct disorder diagnosis. Twin studies routinely estimate the heritability of CU as greater than 50%. It is now possible to estimate genetic influence using DNA alone from samples of unrelated individuals, not relying on the assumptions of the twin method. Here we use this new DNA method (implemented in a software package called Genome-wide Complex Trait Analysis, GCTA) for the first time to estimate genetic influence on CU. We also report the first genome-wide association (GWA) study of CU as a quantitative trait. We compare these DNA results to those from twin analyses using the same measure and the same community sample of 2,930 children rated by their teachers at ages 7, 9 and 12. GCTA estimates of heritability were near zero, even though twin analysis of CU in this sample confirmed the high heritability of CU reported in the literature, and even though GCTA estimates of heritability were substantial for cognitive and anthropological traits in this sample. No significant associations were found in GWA analysis, which, like GCTA, only detects additive effects of common DNA variants. The phrase ‘missing heritability’ was coined to refer to the gap between variance associated with DNA variants identified in GWA studies versus twin study heritability. However, GCTA heritability, not twin study heritability, is the ceiling for GWA studies because both GCTA and GWA are limited to the overall additive effects of common DNA variants, whereas twin studies are not. This GCTA ceiling is very low for CU in our study, despite its high twin study heritability estimate. The gap between GCTA and twin study heritabilities will make it challenging to identify genes responsible for the heritability of CU
Fluoride Exposure in Michigan Schoolchildren
Recent trends in the prevalence of dental caries in children, as well as a possible increase in the prevalence of dental fluorosis, have prompted some researchers to suggest the reassessment of water fluoride concentration standards. Instead of reducing water fluoride concentrations, an alternative approach would be to limit the use of, or reduce the fluoride concentration of, dentifrices, mouthrinses, and supplements. Information about the use of these other sources of fluoride, however, is scarce. Using data from a 1987 survey of Michigan schoolchildren, exposure to selected fluoride sources as well as tooth brushing habits are described. Responses from questionnaires revealed that, overall, 98.5 percent of the children have used fluoride dentifrices, 27 percent have used topical fluoride rinses, 72.5 percent have had at least one exposure to professionally applied topical fluoride, and 27percent have used dietary fluoride supplements. Although the use of fluoride dietary supplements was appropriate for most children residing in fluoride-deficient Cadillac, the percentages of children in the other communities who have ingested these supplements suggest that these products are being prescribed improperly. Given the almost universal use of fluoride dentifrices at an early age, it may be time to investigate the use of reduced fluoride dentifrices for children. In addition, continuing efforts to decrease inappropriate dietary fluoride supplementation are required.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65672/1/j.1752-7325.1990.tb03552.x.pd
- …