132 research outputs found

    Partial domain wall partition functions

    Full text link
    We consider six-vertex model configurations on an n-by-N lattice, n =< N, that satisfy a variation on domain wall boundary conditions that we define and call "partial domain wall boundary conditions". We obtain two expressions for the corresponding "partial domain wall partition function", as an (N-by-N)-determinant and as an (n-by-n)-determinant. The latter was first obtained by I Kostov. We show that the two determinants are equal, as expected from the fact that they are partition functions of the same object, that each is a discrete KP tau-function, and, recalling that these determinants represent tree-level structure constants in N=4 SYM, we show that introducing 1-loop corrections, as proposed by N Gromov and P Vieira, preserves the determinant structure.Comment: 30 pages, LaTeX. This version, which appeared in JHEP, has an abbreviated abstract and some minor stylistic change

    The Gervais-Neveu-Felder equation and the quantum Calogero-Moser systems

    Get PDF
    We quantize the spin Calogero-Moser model in the RR-matrix formalism. The quantum RR-matrix of the model is dynamical. This RR-matrix has already appeared in Gervais-Neveu's quantization of Toda field theory and in Felder's quantization of the Knizhnik-Zamolodchikov-Bernard equation.Comment: Comments and References adde

    Three-point function of semiclassical states at weak coupling

    Full text link
    We give the derivation of the previously announced analytic expression for the correlation function of three heavy non-BPS operators in N=4 super-Yang-Mills theory at weak coupling. The three operators belong to three different su(2) sectors and are dual to three classical strings moving on the sphere. Our computation is based on the reformulation of the problem in terms of the Bethe Ansatz for periodic XXX spin-1/2 chains. In these terms the three operators are described by long-wave-length excitations over the ferromagnetic vacuum, for which the number of the overturned spins is a finite fraction of the length of the chain, and the classical limit is known as the Sutherland limit. Technically our main result is a factorized operator expression for the scalar product of two Bethe states. The derivation is based on a fermionic representation of Slavnov's determinant formula, and a subsequent bosonisation.Comment: 28 pages, 5 figures, cosmetic changes and more typos corrected in v

    (l,q)(l,q)-Deformed Grassmann Field and the Two-dimensional Ising Model

    Full text link
    In this paper we construct the exact representation of the Ising partition function in the form of the SLq(2,R) SL_q(2,R)-invariant functional integral for the lattice free (l,q)(l,q)-fermion field theory (l=q=1l=q=-1). It is shown that the (l,q)(l,q)-fermionization allows one to re-express the partition function of the eight-vertex model in external field through functional integral with four-fermion interaction. To construct these representations, we define a lattice (l,q,s)(l,q,s)-deformed Grassmann bispinor field and extend the Berezin integration rules to this field. At l=q=1,s=1l=q=-1, s=1 we obtain the lattice (l,q)(l,q)-fermion field which allows us to fermionize the two-dimensional Ising model. We show that the Gaussian integral over (q,s)(q,s)-Grassmann variables is expressed through the (q,s)(q,s)-deformed Pfaffian which is equal to square root of the determinant of some matrix at q=±1,s=±1q=\pm 1, s=\pm 1.Comment: 24 pages, LaTeX; minor change

    Crystal isomorphisms in Fock spaces and Schensted correspondence in affine type A

    Get PDF
    We are interested in the structure of the crystal graph of level ll Fock spaces representations of Uq(sle^)\mathcal{U}_q (\widehat{\mathfrak{sl}_e}). Since the work of Shan [26], we know that this graph encodes the modular branching rule for a corresponding cyclotomic rational Cherednik algebra. Besides, it appears to be closely related to the Harish-Chandra branching graph for the appropriate finite unitary group, according to [8]. In this paper, we make explicit a particular isomorphism between connected components of the crystal graphs of Fock spaces. This so-called "canonical" crystal isomorphism turns out to be expressible only in terms of: - Schensted's classic bumping procedure, - the cyclage isomorphism defined in [13], - a new crystal isomorphism, easy to describe, acting on cylindric multipartitions. We explain how this can be seen as an analogue of the bumping algorithm for affine type AA. Moreover, it yields a combinatorial characterisation of the vertices of any connected component of the crystal of the Fock space

    Bulk correlation functions in 2D quantum gravity

    Full text link
    We compute bulk 3- and 4-point tachyon correlators in the 2d Liouville gravity with non-rational matter central charge c<1, following and comparing two approaches. The continuous CFT approach exploits the action on the tachyons of the ground ring generators deformed by Liouville and matter ``screening charges''. A by-product general formula for the matter 3-point OPE structure constants is derived. We also consider a ``diagonal'' CFT of 2D quantum gravity, in which the degenerate fields are restricted to the diagonal of the semi-infinite Kac table. The discrete formulation of the theory is a generalization of the ADE string theories, in which the target space is the semi-infinite chain of points.Comment: 14 pages, 2 figure

    Off-Critical Logarithmic Minimal Models

    Full text link
    We consider the integrable minimal models M(m,m;t){\cal M}(m,m';t), corresponding to the φ1,3\varphi_{1,3} perturbation off-criticality, in the {\it logarithmic limit\,} m,mm, m'\to\infty, m/mp/pm/m'\to p/p' where p,pp, p' are coprime and the limit is taken through coprime values of m,mm,m'. We view these off-critical minimal models M(m,m;t){\cal M}(m,m';t) as the continuum scaling limit of the Forrester-Baxter Restricted Solid-On-Solid (RSOS) models on the square lattice. Applying Corner Transfer Matrices to the Forrester-Baxter RSOS models in Regime III, we argue that taking first the thermodynamic limit and second the {\it logarithmic limit\,} yields off-critical logarithmic minimal models LM(p,p;t){\cal LM}(p,p';t) corresponding to the φ1,3\varphi_{1,3} perturbation of the critical logarithmic minimal models LM(p,p){\cal LM}(p,p'). Specifically, in accord with the Kyoto correspondence principle, we show that the logarithmic limit of the one-dimensional configurational sums yields finitized quasi-rational characters of the Kac representations of the critical logarithmic minimal models LM(p,p){\cal LM}(p,p'). We also calculate the logarithmic limit of certain off-critical observables Or,s{\cal O}_{r,s} related to One Point Functions and show that the associated critical exponents βr,s=(2α)Δr,sp,p\beta_{r,s}=(2-\alpha)\,\Delta_{r,s}^{p,p'} produce all conformal dimensions Δr,sp,p<(pp)(9pp)4pp\Delta_{r,s}^{p,p'}<{(p'-p)(9p-p')\over 4pp'} in the infinitely extended Kac table. The corresponding Kac labels (r,s)(r,s) satisfy (pspr)2<8p(pp)(p s-p' r)^2< 8p(p'-p). The exponent 2α=p2(pp)2-\alpha ={p'\over 2(p'-p)} is obtained from the logarithmic limit of the free energy giving the conformal dimension Δt=1α2α=2ppp=Δ1,3p,p\Delta_t={1-\alpha\over 2-\alpha}={2p-p'\over p'}=\Delta_{1,3}^{p,p'} for the perturbing field tt. As befits a non-unitary theory, some observables Or,s{\cal O}_{r,s} diverge at criticality.Comment: 18 pages, 5 figures; version 3 contains amplifications and minor typographical correction

    Domain wall partition functions and KP

    Full text link
    We observe that the partition function of the six vertex model on a finite square lattice with domain wall boundary conditions is (a restriction of) a KP tau function and express it as an expectation value of charged free fermions (up to an overall normalization).Comment: 16 pages, LaTeX2

    Paths and partitions: combinatorial descriptions of the parafermionic states

    Full text link
    The Z_k parafermionic conformal field theories, despite the relative complexity of their modes algebra, offer the simplest context for the study of the bases of states and their different combinatorial representations. Three bases are known. The classic one is given by strings of the fundamental parafermionic operators whose sequences of modes are in correspondence with restricted partitions with parts at distance k-1 differing at least by 2. Another basis is expressed in terms of the ordered modes of the k-1 different parafermionic fields, which are in correspondence with the so-called multiple partitions. Both types of partitions have a natural (Bressoud) path representation. Finally, a third basis, formulated in terms of different paths, is inherited from the solution of the restricted solid-on-solid model of Andrews-Baxter-Forrester. The aim of this work is to review, in a unified and pedagogical exposition, these four different combinatorial representations of the states of the Z_k parafermionic models. The first part of this article presents the different paths and partitions and their bijective relations; it is purely combinatorial, self-contained and elementary; it can be read independently of the conformal-field-theory applications. The second part links this combinatorial analysis with the bases of states of the Z_k parafermionic theories. With the prototypical example of the parafermionic models worked out in detail, this analysis contributes to fix some foundations for the combinatorial study of more complicated theories. Indeed, as we briefly indicate in ending, generalized versions of both the Bressoud and the Andrews-Baxter-Forrester paths emerge naturally in the description of the minimal models.Comment: 53 pages (v2: minor modifications,v3: 3 typos corrected); to appear in the special issue of J. Math. Phys. on "Integrable Quantum Systems and Solvable Statistical Mechanics Models.
    corecore