14 research outputs found

    Drosophila selenophosphate synthetase 1 regulates vitamin B6 metabolism: prediction and confirmation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are two selenophosphate synthetases (SPSs) in higher eukaryotes, SPS1 and SPS2. Of these two isotypes, only SPS2 catalyzes selenophosphate synthesis. Although SPS1 does not contain selenophosphate synthesis activity, it was found to be essential for cell growth and embryogenesis in <it>Drosophila</it>. The function of SPS1, however, has not been elucidated.</p> <p>Results</p> <p>Differentially expressed genes in <it>Drosophila </it>SL2 cells were identified using two-way analysis of variance methods and clustered according to their temporal expression pattern. Gene ontology analysis was performed against differentially expressed genes and gene ontology terms related to vitamin B6 biosynthesis were found to be significantly affected at the early stage at which megamitochondria were not formed (day 3) after <it>SPS1 </it>knockdown. Interestingly, genes related to defense and amino acid metabolism were affected at a later stage (day 5) following knockdown. Levels of pyridoxal phosphate, an active form of vitamin B6, were decreased by <it>SPS1 </it>knockdown. Treatment of SL2 cells with an inhibitor of pyridoxal phosphate synthesis resulted in both a similar pattern of expression as that found by <it>SPS1 </it>knockdown and the formation of megamitochondria, the major phenotypic change observed by <it>SPS1 </it>knockdown.</p> <p>Conclusions</p> <p>These results indicate that SPS1 regulates vitamin B6 synthesis, which in turn impacts various cellular systems such as amino acid metabolism, defense and other important metabolic activities.</p

    Structure and properties of recombinant human pyridoxine 5'-phosphate oxidase.

    No full text
    IF 3.78

    Serine hydroxymethyltransferase: role of glu75 and evidence that serine is cleaved by a retroaldol mechanism

    No full text
    Serine hydroxymethyltransferase (SHMT) catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate serving as the one-carbon carrier. SHMT also catalyzes the folate-independent retroaldol cleavage of allothreonine and 3-phenylserine and the irreversible conversion of 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate. Studies of wild-type and site mutants of SHMT have failed to clearly establish the mechanism of this enzyme. The cleavage of 3-hydroxy amino acids to glycine and an aldehyde occurs by a retroaldol mechanism. However, the folate-dependent cleavage of serine can be described by either the same retroaldol mechanism with formaldehyde as an enzyme-bound intermediate or by a nucleophilic displacement mechanism in which N5 of tetrahydrofolate displaces the C3 hydroxyl of serine, forming a covalent intermediate. Glu75 of SHMT is clearly involved in the reaction mechanism; it is within hydrogen bonding distance of the hydroxyl group of serine and the formyl group of 5-formyltetrahydrofolate in complexes of these species with SHMT. This residue was changed to Leu and Gln, and the structures, kinetics, and spectral properties of the site mutants were determined. Neither mutation significantly changed the structure of SHMT, the spectral properties of its complexes, or the kinetics of the retroaldol cleavage of allothreonine and 3-phenylserine. However, both mutations blocked the folate-dependent serine-to-glycine reaction and the conversion of methenyltetrahydrofolate to 5-formyltetrahydrofolate. These results clearly indicate that interaction of Glu75 with folate is required for folate-dependent reactions catalyzed by SHMT. Moreover, we can now propose a promising modification to the retroaldol mechanism for serine cleavage. As the first step, N5 of tetrahydrofolate makes a nucleophilic attack on C3 of serine, breaking the C2-C3 bond to form N5-hydroxymethylenetetrahydrofolate and an enzyme-bound glycine anion. The transient formation of formaldehyde as an intermediate is possible, but not required. This mechanism explains the greatly enhanced rate of serine cleavage in the presence of folate, and avoids some serious difficulties presented by the nucleophilic displacement mechanism involving breakage of the C3-OH bond

    Significance of local electrostatic interactions in staphylococcal nuclease studied by site-directed mutagenesis

    No full text
    In this paper, we show that amino acids Glu(73) and Asp(77) of staphylococcal nuclease cooperate unequally with Glu(75) to stabilize its structure located between the C-terminal helix and beta -barrel of the protein. Amino acid substitutions E73G and D77G cause losses of the catalytic efficiency of 24 and 16\% and cause thermal stability losses of 22 and 26\%, respectively, in comparison with the wild type (WT) protein. However, these changes do not significantly change global and local secondary structures, based on measurements of fluorescence and CD222nm. Furthermore, x-ray diffraction analysis of the E75G protein shows that the overall structure of mutant and WT proteins is similar. However, this mutation does cause a loss of essential hydrogen bonding and charge interactions between Glu(75) and Lyg(9), Tyr(93), and HiS(121). In experiments using double point mutations, E73G/ D77G, E73G/E75G, and E75G/D77G, significant changes are seen in all mutants in comparison with WT protein as measured by fluorescence and CD spectroscopy. The losses of thermal stability are 47, 59, and 58\%, for E73G/ D77G, E73G/E75G, and E75G/D77G, respectively. The triple mutant, E73G/E75G/D77G, results in fluorescence intensity and CD222nm close to those of the denatured state and in a thermal stability loss of 65\% relative to the WT protein. Based on these results, we propose a model in which significant electrostatic interactions result in the formation of a locally stable structure in staphylococcal nuclease
    corecore