159 research outputs found

    Климатические особенности и статистические оценки изменения элементов климата в районах вечной мерзлоты на территории севера Западной Сибири

    Get PDF
    Актуальность работы связана с необходимостью оценки изменений климата, влияющих на многолетнюю мерзлоту, в связи с возможным увеличением выбросов парниковых газов и увеличения аварийности на объектах промышленной, в том числе и нефтегазовой, инфраструктуры при таянии многолетнемерзлых пород. Цель работы: исследование современных изменений характеристик климата, непосредственно влияющих на термическое состояние почвогрунтов в районах распространения многолетней мерзлоты севера Западной Сибири. Методы исследования. Анализ многолетних изменений метеорологических данных включал в себя проверку нулевых гипотез о случайности и однородности рядов наблюдений и наличия тренда. Проверка на однородность осуществлялась с помощью теста Аббе, на случайность - критерием Питмена, на наличие тренда производилась с помощью критерия инверсий. Вывод о неслучайном изменении или нарушении однородности рядов соответствовал условию, когда расчетная статистика превышала соответствующее критическое значение при уровне значимости 0,05. Результаты. Рассмотрены особенности климата севера Западной Сибири и его изменчивость в последние годы. Исследованы изменения температуры воздуха и почвогрунтов на глубинах 160 и 320 см, продолжительность прямой солнечной радиации, суммы атмосферных осадков и высоты снежного покрова на основе инструментальных данных за последние 35 лет. В результате статистического анализа установлено сохранение темпов роста температуры воздуха в теплое время года, увеличение температуры почвогрунтов в течение всего года, выявлен зональный характер изменения суммы атмосферных осадков и снежного покрова. Микроклиматические изменения характеристик метеорологических величин могут искажать реальную картину изменения климата.The relevance of the research is related to the necessity to assess climate changes affecting the permafrost due to the possible growth of greenhouse gas emissions and increase of accident rate in industrial, oil and gas infrastructure at permafrost thawing. The aim of the research is to estimate the current changes in climate characteristics, which affect directly the thermal state of soils in permafrost areas in the north of Western Siberia. Methods. Analysis of long-term changes of meteorological data consisted of tests of null hypothesis of randomness and homogeneity of observation series and trend presence. The homogeneity test was carried out using the Abbe test, the test of randomness was carried out by Pitman criterion, the trend presence was checked using the criterion of inversions. The conclusion on nonrandom change or violation of the homogeneity of rows corresponded to the condition, when the modulus of the estimated statistics exceeded the corresponding critical value at significance level of 0,05. Results. The paper considers the climatic features in the north of Western Siberia and its variability in recent years. The analysis of temperature changes of air and soil at depths of 160 and 320 cm, the amount of precipitation and snow cover based on the instrumental data for the last 35 years has shown that air temperature continues rising in the warmer months, soil temperature increases throughout the year. The authors have revealed zonal character of changes in the amount of precipitation and snow cover. Microclimatic changes in characteristic of meteorological values can distort the real picture of climate change

    Recombinant protein production by large-scale transient gene expression in mammalian cells : state of the art and future perspectives

    Get PDF
    The expansion of the biologics pipeline depends on the identification of candidate proteins for clinical trials. Speed is one of the critical issues, and the rapid production of high quality, research-grade material for preclinical studies by transient gene expression (TGE) is addressing this factor in an impressive way: following DNA transfection, the production phase for TGE is usually 2-10 days. Recombinant proteins (r-proteins) produced by TGE can therefore enter the drug development and screening process in a very short time--weeks. With "classical" approaches to protein expression from mammalian cells, it takes months to establish a productive host cell line. This article summarizes efforts in industry and academia to use TGE to produce tens to hundreds of milligrams of r-proteins for either fundamental research or preclinical studies

    Effect of different UCOE-promoter combinations in creation of engineered cell lines for the production of Factor VIII

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The most common approach used in generating cell lines for the production of therapetic proteins relies on gene amplification induced by a drug resistance gene e. g., DHFR and glutamine synthetase. Practically, this results in screening large number of clones for the one that expresses high levels of the biologic in a stable manner. The inefficiency of mammalian vector systems to express proteins in a stable manner typically involves silencing of the exogenous gene resulting from modifications such as methylation of CpG DNA sequences, histone deacetylation and chromatin condensation. The use of un-methylated CpG island fragments from housekeeping genes referred to as UCOE (ubiquitous chromatin opening elements) in plasmid vectors is now well established for increased stability of transgene expression. However, few UCOE-promoter combinations have been studied to date and in this report we have tested 14 different combinations.</p> <p>Findings</p> <p>In this report we describe studies with two different UCOEs (the 1.5 Kb human RNP fragment and the 3.2 Kb mouse RPS3 fragment) in combination with various promoters to express a large protein (B domain deleted factor VIII; BDD-FVIII) in a production cell line, BHK21. We show here that there are differences in expression of BDD-FVIII by the different UCOE-promoter combinations in both attached and serum free suspension adapted cells. In all cases, the 1.5 Kb human RNP UCOE performed better in expressing BDD-FVIII than their corresponding 3.2 Kb mouse RPS3 UCOE. Surprisingly, in certain scenarios described here, expression from a number of promoters was equivalent or higher than the commonly used and industry standard human CMV promoter.</p> <p>Conclusion</p> <p>This study indicates that certain UCOE-promoter combinations are better than others in expressing the BDD-FVIII protein in a stable manner in BHK21 cells. An empirical study such as this is required to determine the best combination of UCOE-promoter in a vector for a particular production cell line.</p

    Single-Batch Production of Recombinant Human Polyclonal Antibodies

    Get PDF
    We have previously described the development and implementation of a strategy for production of recombinant polyclonal antibodies (rpAb) in single batches employing CHO cells generated by site-specific integration, the SympressTM I technology. The SympressTM I technology is implemented at industrial scale, supporting a phase II clinical development program. Production of recombinant proteins by site-specific integration, which is based on incorporation of a single copy of the gene of interest, makes the SympressTM I technology best suited to support niche indications. To improve titers while maintaining a cost-efficient, highly reproducible single-batch manufacturing mode, we have evaluated a number of different approaches. The most successful results were obtained using random integration in a new producer cell termed ECHO, a CHO DG44 cell derivative engineered for improved productivity at Symphogen. This new expression process is termed the SympressTM II technology. Here we describe proof-of-principle data demonstrating the feasibility of the SympressTM II technology for single-batch rpAb manufacturing using two model systems each composed of six target-specific antibodies. The compositional stability and the batch-to-batch reproducibility of rpAb produced by the ECHO cells were at least as good as observed previously using site-specific integration technology. Furthermore, the new process had a significant titer increase

    The Use of a Stringent Selection System Allows the Identification of DNA Elements that Augment Gene Expression

    Get PDF
    The use of high stringency selection systems often results in the induction of very few recombinant mammalian cell lines, which limits the ability to isolate a cell line with favorable characteristics. The employment of for instance STAR elements in DNA constructs elevates the induced number of colonies and also the protein expression levels in these colonies. Here, we describe a method to systematically identify genomic DNA elements that are able to induce many stably transfected mammalian cell lines. We isolated genomic DNA fragments upstream from the human Rb1 and p73 gene loci and cloned them around an expression cassette that contains a very stringent selection marker. Due to the stringency of the selection marker, hardly any colony survives without flanking DNA elements. We tested fourteen ~3500 bp DNA stretches from the Rb1 and p73 loci. Only two ~3500 bp long DNA fragments, called Rb1E and Rb1F, induced many colonies in the context of the stringent selection system and these colonies displayed high protein expression levels. Functional analysis showed that the Rb1 DNA fragments contained no enhancer, promoter, or STAR activity. Our data show the potential of a methodology to identify novel gene expression augmenting DNA elements in an unbiased manner

    A Versatile System for USER Cloning-Based Assembly of Expression Vectors for Mammalian Cell Engineering

    Get PDF
    A new versatile mammalian vector system for protein production, cell biology analyses, and cell factory engineering was developed. The vector system applies the ligation-free uracil-excision based technique--USER cloning--to rapidly construct mammalian expression vectors of multiple DNA fragments and with maximum flexibility, both for choice of vector backbone and cargo. The vector system includes a set of basic vectors and a toolbox containing a multitude of DNA building blocks including promoters, terminators, selectable marker- and reporter genes, and sequences encoding an internal ribosome entry site, cellular localization signals and epitope- and purification tags. Building blocks in the toolbox can be easily combined as they contain defined and tested Flexible Assembly Sequence Tags, FASTs. USER cloning with FASTs allows rapid swaps of gene, promoter or selection marker in existing plasmids and simple construction of vectors encoding proteins, which are fused to fluorescence-, purification-, localization-, or epitope tags. The mammalian expression vector assembly platform currently allows for the assembly of up to seven fragments in a single cloning step with correct directionality and with a cloning efficiency above 90%. The functionality of basic vectors for FAST assembly was tested and validated by transient expression of fluorescent model proteins in CHO, U-2-OS and HEK293 cell lines. In this test, we included many of the most common vector elements for heterologous gene expression in mammalian cells, in addition the system is fully extendable by other users. The vector system is designed to facilitate high-throughput genome-scale studies of mammalian cells, such as the newly sequenced CHO cell lines, through the ability to rapidly generate high-fidelity assembly of customizable gene expression vectors

    Mammalian cell transfection: the present and the future

    Get PDF
    Transfection is a powerful analytical tool enabling study of the function of genes and gene products in cells. The transfection methods are broadly classified into three groups; biological, chemical, and physical. These methods have advanced to make it possible to deliver nucleic acids to specific subcellular regions of cells by use of a precisely controlled laser-microcope system. The combination of point-directed transfection and mRNA transfection is a new way of studying the function of genes and gene products. However, each method has its own advantages and disadvantages so the optimum method depends on experimental design and objective

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Exploiting Nucleotide Composition to Engineer Promoters

    Get PDF
    The choice of promoter is a critical step in optimizing the efficiency and stability of recombinant protein production in mammalian cell lines. Artificial promoters that provide stable expression across cell lines and can be designed to the desired strength constitute an alternative to the use of viral promoters. Here, we show how the nucleotide characteristics of highly active human promoters can be modelled via the genome-wide frequency distribution of short motifs: by overlapping motifs that occur infrequently in the genome, we constructed contiguous sequence that is rich in GC and CpGs, both features of known promoters, but lacking homology to real promoters. We show that snippets from this sequence, at 100 base pairs or longer, drive gene expression in vitro in a number of mammalian cells, and are thus candidates for use in protein production. We further show that expression is driven by the general transcription factors TFIIB and TFIID, both being ubiquitously present across cell types, which results in less tissue- and species-specific regulation compared to the viral promoter SV40. We lastly found that the strength of a promoter can be tuned up and down by modulating the counts of GC and CpGs in localized regions. These results constitute a “proof-of-concept” for custom-designing promoters that are suitable for biotechnological and medical applications
    corecore