715 research outputs found

    Switch from alpha v beta 5 to alpha v beta 6 integrin expression protects squamous cell carcinomas from anoikis

    Get PDF
    Stratified squamous epithelia express the alphavbeta5 integrin, but in squamous cell carcinomas (SCCs) there is down-regulation of alphavbeta5 and up-regulation of alphavbeta6. To investigate the significance of this finding, we transduced an alphav-negative human SCC line with retroviral vectors encoding alphav integrins. alphavbeta5-expressing cells underwent suspension-induced apoptosis (anoikis), whereas alpha-negative cells and cells expressing alphavbeta6 did not. Resistance to anoikis correlated with PKB/Akt activation in suspension, but not with changes in PTEN or p110alpha P13 kinase levels

    The role of keratins in modulating carcinogenesis via communication with cells of the immune system

    Get PDF
    Keratins are intermediate filament proteins expressed by epithelial cells and provide mechanical support for diverse epithelia. In our recent study (Sequeira et al., Nat Comm 9(1):3437), we analysed the role of keratin 76 (Krt76) in inflammation and cancer. Krt76 is expressed throughout embryonic development in the differentiated epithelial layers of a subset of stratified epithelia including tongue, palate and stomach. It is significantly downregulated in human oral squamous cell carcinoma (OSCC), correlating strongly with poor prognosis. We have shown that Krt76-/- mice exhibit systemic inflammation with increased levels of circulating B cells, regulatory T cells and effector T cells. When mice are given a chemical carcinogen in the drinking water, tongue and gastric cancer formation is accelerated in Krt76-/- mutant mice. Our data suggest that the increased tumour susceptibility of Krt76-/- mice is in part due to the enhanced accumulation of regulatory T cells in the tumour microenvironment. Our results support the notion that keratins, in addition to their function as cytoskeletal components, regulate immunity and affect tumour susceptibility of epithelial cells

    Distinct Fibroblast Lineages Give Rise to NG2+ Pericyte Populations in Mouse Skin Development and Repair.

    Get PDF
    We have examined the developmental origins of Ng2+ perivascular cell populations that adhere to the basement membrane of blood vessels, and their contribution to wound healing. Neural/glial antigen 2 (Ng2) labeled most perivascular cells (70-80%) in developing and adult mouse back skin, a higher proportion than expressed by other pericyte markers Tbx18, Nestin and Pdgfrβ. In adult mouse back skin Ng2+ perivascular cells could be categorized into 4 populations based on whether they expressed Pdgfrα and Pdgfrβ individually or in combination or were Pdgfr-negative. Lineage tracing demonstrated that although Ng2+ cells in embryonic and neonatal back skin contributed to multiple cell types they did not give rise to interfollicular fibroblasts within the dermis. Lineage tracing of distinct fibroblast populations during skin development showed that papillary fibroblasts (Lrig1+) gave rise to Ng2+ perivascular cells in the upper dermis, whilst Ng2+ perivascular cells in the lower dermis were primarily derived from reticular Dlk1+ fibroblasts. Following wounding of adult skin, Ng2+ dermal cells only give rise to Ng2+ blood vessel associated cells and did not contribute to other fibroblast lineages. The relative abundance of Ng2+ Pdgfrβ+ perivascular populations was comparable in wounded and non-wounded skin, indicating that perivascular heterogeneity was maintained during full thickness skin repair. In the wound bed Ng2+ perivascular populations were primarily derived from Lrig1+ papillary or Dlk1+ reticular fibroblast lineages, according to the location of the regenerating blood vessels. We conclude that Ng2+ perivascular cells represent a heterogeneous lineage restricted population that is primarily recruited from the papillary or reticular fibroblast lineages during tissue regeneration

    Local Microenvironment Provides Important Cues for Cell Differentiation in Lingual Epithelia

    Get PDF
    Transgenic Keratin14-rtTA-PTR mice specifically express Keratin14 (K14) in the tongue epithelia, as well as co-express EGFP and the dominant negative ΔTgfbr2 genes upon treatment with Doxycycline (Dox). As TGF-β signaling negatively regulates the stem cell cycle and proliferation, its disruption by Dox induction in these transgenic mice shortens the cell cycle and allows observation of the final fate of those mutated cell lineages within a short period of time. Here, we used inducible transgenic mice to track the K14+ cells through the cell migration stream by immunohistochemical an immunofluorescent imaging. We showed that these cells have different development patterns from the tip to posterior of the tongue, achieved presumably by integrating positional information from the microenvironment. The expression of the K14 gene was variable, depending on the location of the tongue and papillae. Disruption of TGF-β signaling in K14+ progenitor cells resulted in proliferation of stem cell pools

    Dynamic Culture Substrates That Mimic the Topography of the Epidermal-Dermal Junction

    Get PDF
    The junction between the epidermal and dermal layers of human skin undulates, the width and depth of the undulations varying with age and disease. We previously showed that when primary human epidermal keratinocytes are seeded on collagen-coated undulating static polydimethylsiloxane (PDMS) elastomer substrates, the stem cells, differentiated cells, and proliferating cells become patterned in response to cues from the underlying substrate. To investigate how patterning occurs over time, we have now created a dynamic model, in which a collagen-coated poly(d,l-lactide-co-glycolide) (PLGA) membrane is placed over a polyimide sheet containing circular holes, differing in diameter and spacing. When a vacuum is applied the membrane is induced to undulate, the heights of the undulations depending on the pressure applied and the size of the holes. We observed clustering of cells with high levels of b1 integrin expression, a stem cell marker, in the base of the undulations within 48 h of applying the vacuum. Differentiating involucrin-positive cells did not cluster; however, there was clustering of cells with high E-cadherin expression and nuclear YAP. Rho kinase inhibition resulted in loss of clustering, suggesting a role for Rho family members in the process

    Multiscale spatial mapping of cell populations across anatomical sites in healthy human skin and basal cell carcinoma

    Get PDF
    \ua9 2024 National Academy of Sciences. All rights reserved.Our understanding of how human skin cells differ according to anatomical site and tumour formation is limited. To address this, we have created a multiscale spatial atlas of healthy skin and basal cell carcinoma (BCC), incorporating in vivo optical coherence tomography, single-cell RNA sequencing, spatial global transcriptional profiling, and in situ sequencing. Computational spatial deconvolution and projection revealed the localisation of distinct cell populations to specific tissue contexts. Although cell populations were conserved between healthy anatomical sites and in BCC, mesenchymal cell populations including fibroblasts and pericytes retained signatures of developmental origin. Spatial profiling and in silico lineage tracing support a hair follicle origin for BCC and demonstrate that cancer-associated fibroblasts are an expansion of a POSTN+ subpopulation associated with hair follicles in healthy skin. RGS5+ pericytes are also expanded in BCC suggesting a role in vascular remodelling. We propose that the identity of mesenchymal cell populations is regulated by signals emanating from adjacent structures and that these signals are repurposed to promote the expansion of skin cancer stroma. The resource we have created is publicly available in an interactive format for the research community

    β1 Integrin-Mediated Adhesion Signalling Is Essential for Epidermal Progenitor Cell Expansion

    Get PDF
    Background: There is a major discrepancy between the in vitro and in vivo results regarding the role of b1 integrins in the maintenance of epidermal stem/progenitor cells. Studies of mice with skin-specific ablation of b1 integrins suggested that epidermis can form and be maintained in their absence, while in vitro data have shown a fundamental role for these adhesion receptors in stem/progenitor cell expansion and differentiation. Methodology/Principal Findings: To elucidate this discrepancy we generated hypomorphic mice expressing reduced b1 integrin levels on keratinocytes that developed similar, but less severe defects than mice with b1-deficient keratinocytes. Surprisingly we found that upon aging these abnormalities attenuated due to a rapid expansion of cells, which escaped or compensated for the down-regulation of b1 integrin expression. A similar phenomenon was observed in aged mice with a complete, skin-specific ablation of the b1 integrin gene, where cells that escaped Cre-mediated recombination repopulated the mutant skin in a very short time period. The expansion of b1 integrin expressing keratinocytes was even further accelerated in situations of increased keratinocyte proliferation such as wound healing. Conclusions/Significance: These data demonstrate that expression of b1 integrins is critically important for the expansion of epidermal progenitor cells to maintain epidermal homeostasis
    corecore