1,046 research outputs found

    Free health care for under-fives, expectant and recent mothers? Evaluating the impact of Sierra Leone's free health care initiative.

    Get PDF
    This study evaluates the impact of Sierra Leone's 2010 Free Health Care Initiative (FHCI). It uses two nationally representative surveys to identify the impact of the policy on utilisation of maternal care services by pregnant women and recent mothers as well as the impact on curative health care services and out-of-pocket payments for consultation and prescription in children under the age of 5 years. A Regression Discontinuity Design (RDD) is applied in the case of young children and a before-after estimation approach, adjusted for time trends in the case of expectant and recent mothers. Our results suggest that children affected by the FHCI have a lower probability of incurring any health expenditure in public, non-governmental and missionary health facilities. However, a proportion of eligible children are observed to incur some health expenditure in participating facilities with no impact of the policy on the level of out-of-pocket health expenditure. Similarly, no impact is observed with the utilisation of services in these facilities. Utilisation of informal care is observed to be higher among non-eligible children while in expectant and recent mothers, we find substantial but possibly transient increases in the use of key maternal health care services in public facilities following the implementation of the FHCI. The diminishing impact on utilisation mirrors experience in other countries that have implemented free health care initiatives and demonstrates the need for greater domestic and international efforts to ensure that resources are sufficient to meet increasing demand and monitor the long run impact of these policies

    Towards the Formalization of Fractional Calculus in Higher-Order Logic

    Full text link
    Fractional calculus is a generalization of classical theories of integration and differentiation to arbitrary order (i.e., real or complex numbers). In the last two decades, this new mathematical modeling approach has been widely used to analyze a wide class of physical systems in various fields of science and engineering. In this paper, we describe an ongoing project which aims at formalizing the basic theories of fractional calculus in the HOL Light theorem prover. Mainly, we present the motivation and application of such formalization efforts, a roadmap to achieve our goals, current status of the project and future milestones.Comment: 9 page

    Gadolinium oxide nanocrystal nonvolatile memory with HfO2/Al2O3 nanostructure tunneling layers

    Get PDF
    In this study, Gd2O3 nanocrystal (Gd2O3-NC) memories with nanostructure tunneling layers are fabricated to examine their performance. A higher programming speed for Gd2O3-NC memories with nanostructure tunneling layers is obtained when compared with that of memories using a single tunneling layer. A longer data retention (< 15% charge loss after 104 s) is also observed. This is due to the increased physical thickness of the nanostructure tunneling layer. The activation energy of charge loss at different temperatures is estimated. The higher activation energy value (0.13 to 0.17 eV) observed at the initial charge loss stage is attributed to the thermionic emission mechanism, while the lower one (0.07 to 0.08 eV) observed at the later charge loss stage is attributed to the direct tunneling mechanism. Gd2O3-NC memories with nanostructure tunneling layers can be operated without degradation over several operation cycles. Such NC structures could potentially be used in future nonvolatile memory applications

    Surveillance of Airborne Adenovirus and Mycoplasma pneumoniae in a Hospital Pediatric Department

    Get PDF
    This investigation evaluated the distributions of airborne adenovirus and Mycoplasma pneumoniae in public areas in the pediatric department of Children's Hospital in northern Taiwan. The airborne viral and bacterial concentrations were evaluated twice a week for a year using filter sampling with an airflow rate of 12 liters per minute for eight hours in the pediatric outpatient department and 24 hours in the pediatric emergency room. Real-time polymerase chain reaction assays were conducted for analysis. Approximately 18% of the air samples from the pediatric emergency room were found to contain adenovirus. Approximately forty-six percent of the air samples from the pediatric outpatient department contained Mycoplasma pneumoniae DNA products. High detection rates of airborne adenovirus DNA were obtained in July and August in the pediatric public areas. Airborne Mycoplasma pneumoniae was detected only in July in the pediatric emergency room and the peak levels were found from August to January in the pediatric outpatient department. Airborne particles that contained adenovirus and Mycoplasma pneumoniae were the most prevalent in the pediatric public areas. The potential relationship between these airborne viral/bacterial particles and human infection should be examined further

    Towards the clinical implementation of pharmacogenetics in bipolar disorder.

    Get PDF
    BackgroundBipolar disorder (BD) is a psychiatric illness defined by pathological alterations between the mood states of mania and depression, causing disability, imposing healthcare costs and elevating the risk of suicide. Although effective treatments for BD exist, variability in outcomes leads to a large number of treatment failures, typically followed by a trial and error process of medication switches that can take years. Pharmacogenetic testing (PGT), by tailoring drug choice to an individual, may personalize and expedite treatment so as to identify more rapidly medications well suited to individual BD patients.DiscussionA number of associations have been made in BD between medication response phenotypes and specific genetic markers. However, to date clinical adoption of PGT has been limited, often citing questions that must be answered before it can be widely utilized. These include: What are the requirements of supporting evidence? How large is a clinically relevant effect? What degree of specificity and sensitivity are required? Does a given marker influence decision making and have clinical utility? In many cases, the answers to these questions remain unknown, and ultimately, the question of whether PGT is valid and useful must be determined empirically. Towards this aim, we have reviewed the literature and selected drug-genotype associations with the strongest evidence for utility in BD.SummaryBased upon these findings, we propose a preliminary panel for use in PGT, and a method by which the results of a PGT panel can be integrated for clinical interpretation. Finally, we argue that based on the sufficiency of accumulated evidence, PGT implementation studies are now warranted. We propose and discuss the design for a randomized clinical trial to test the use of PGT in the treatment of BD

    Regulation of Brown Fat Adipogenesis by Protein Tyrosine Phosphatase 1B

    Get PDF
    Protein-tyrosine phosphatase 1B (PTP1B) is a physiological regulator of insulin signaling and energy balance, but its role in brown fat adipogenesis requires additional investigation.To precisely determine the role of PTP1B in adipogenesis, we established preadipocyte cell lines from wild type and PTP1B knockout (KO) mice. In addition, we reconstituted KO cells with wild type, substrate-trapping (D/A) and sumoylation-resistant (K/R) PTP1B mutants, then characterized differentiation and signaling in these cells. KO, D/A- and WT-reconstituted cells fully differentiated into mature adipocytes with KO and D/A cells exhibiting a trend for enhanced differentiation. In contrast, K/R cells exhibited marked attenuation in differentiation and lipid accumulation compared with WT cells. Expression of adipogenic markers PPARγ, C/EBPα, C/EBPδ, and PGC1α mirrored the differentiation pattern. In addition, the differentiation deficit in K/R cells could be reversed completely by the PPARγ activator troglitazone. PTP1B deficiency enhanced insulin receptor (IR) and insulin receptor substrate 1 (IRS1) tyrosyl phosphorylation, while K/R cells exhibited attenuated insulin-induced IR and IRS1 phosphorylation and glucose uptake compared with WT cells. In addition, substrate-trapping studies revealed that IRS1 is a substrate for PTP1B in brown adipocytes. Moreover, KO, D/A and K/R cells exhibited elevated AMPK and ACC phosphorylation compared with WT cells.These data indicate that PTP1B is a modulator of brown fat adipogenesis and suggest that adipocyte differentiation requires regulated expression of PTP1B

    Photocatalytic activity of nitrogen-doped TiO2-based nanowires: a photo-assisted Kelvin probe force microscopy study

    Get PDF
    The emerging industrial business partnerships, which feature cross-functional and cross-company development efforts, raise the barrier for the establishment of effective knowledge sharing practices in the larger organization. This chapter aims to highlight the role of knowledge as a key enabler for effective engineering activities in the light of such emerging enterprise collaboration models. Knowledge Enabled Engineering (KEE) is presented as an approach to enhance the extended organization’s capability to establish effective collaboration among its parts, in spite of different organizational structures, technologies or processes. KEE is analysed in its constituent parts, highlighting areas, methods and tools that are particularly interesting for leveraging companies’ knowledge sharing capabilities

    Schizophrenia as a disorder of disconnectivity

    Get PDF
    Schizophrenia is considered as a neurodevelopmental disorder with genetic and environmental factors playing a role. Animal models show that developmental hippocampal lesions are causing disconnectivity of the prefrontal cortex. Magnetic resonance imaging and postmortem investigations revealed deficits in the temporoprefrontal neuronal circuit. Decreased oligodendrocyte numbers and expression of oligodendrocyte genes and synaptic proteins may contribute to disturbances of micro- and macro-circuitry in the pathophysiology of the disease. Functional connectivity between cortical areas can be investigated with high temporal resolution using transcranial magnetic stimulation (TMS), electroencephalography (EEG), and magnetoencephalography (MEG). In this review, disconnectivity between different cortical areas in schizophrenia patients is described. The specificity and the neurobiological origin of these connectivity deficits and the relation to the symptom complex of schizophrenia and the glutamatergic and GABAergic system are discussed
    corecore