15 research outputs found

    Endothelial Cells Support Persistent Gammaherpesvirus 68 Infection

    Get PDF
    A variety of human diseases are associated with gammaherpesviruses, including neoplasms of lymphocytes (e.g. Burkitt's lymphoma) and endothelial cells (e.g. Kaposi's sarcoma). Gammaherpesvirus infections usually result in either a productive lytic infection, characterized by expression of all viral genes and rapid cell lysis, or latent infection, characterized by limited viral gene expression and no cell lysis. Here, we report characterization of endothelial cell infection with murine gammaherpesvirus 68 (γHV68), a virus phylogenetically related and biologically similar to the human gammaherpesviruses. Endothelial cells supported γHV68 replication in vitro, but were unique in that a significant proportion of the cells escaped lysis, proliferated, and remained viable in culture for an extended time. Upon infection, endothelial cells became non-adherent and altered in size, complexity, and cell-surface protein expression. These cells were uniformly infected and expressed the lytic transcription program based on detection of abundant viral gene transcripts, GFP fluorescence from the viral genome, and viral surface protein expression. Additionally, endothelial cells continued to produce new infectious virions as late as 30 days post-infection. The outcome of this long-term infection was promoted by the γHV68 v-cyclin, because in the absence of the v-cyclin, viability was significantly reduced following infection. Importantly, infected primary endothelial cells also demonstrated increased viability relative to infected primary fibroblasts, and this increased viability was dependent on the v-cyclin. Finally, we provide evidence for infection of endothelial cells in vivo in immune-deficient mice. The extended viability and virus production of infected endothelial cells indicated that endothelial cells provided a source of prolonged virus production and identify a cell-type specific adaptation of gammaherpesvirus replication. While infected endothelial cells would likely be cleared in a healthy individual, persistently infected endothelial cells could provide a source of continued virus replication in immune-compromised individuals, a context in which gammaherpesvirus-associated pathology frequently occurs

    Hematopoietic stem cell and multilineage defects generated by constitutive β-catenin activation

    No full text
    Gain of Wnt signaling through beta-catenin has been ascribed a critical function in the stimulation of hematopoietic stem cell self-renewal, whereas loss of beta-catenin is reportedly dispensable for hematopoiesis. Here we have used conditional mouse genetics and transplantation assays to demonstrate that constitutive activation of beta-catenin blocked multilineage differentiation, leading to the death of mice. Blood cell depletion was accompanied by failure of hematopoietic stem cells to repopulate irradiated hosts and to differentiate into mature cells. Activation of beta-catenin enforced cell cycle entry of hematopoietic stem cells, thus leading to exhaustion of the long-term stem cell pool. Our data suggest that fine-tuned Wnt stimulation is essential for hematopoiesis and is thus critical for therapeutic hematopoietic stem cell population expansion
    corecore