19 research outputs found

    Synergistic Embryotoxicity of Polycyclic Aromatic Hydrocarbon Aryl Hydrocarbon Receptor Agonists with Cytochrome P4501A Inhibitors in Fundulus heteroclitus

    Get PDF
    Widespread contamination of aquatic systems with polycyclic aromatic hydrocarbons (PAHs) has led to concern about effects of PAHs on aquatic life. Some PAHs have been shown to cause deformities in early life stages of fish that resemble those elicited by planar halogenated aromatic hydrocarbons (pHAHs) that are agonists for the aryl hydrocarbon receptor (AHR). Previous studies have suggested that activity of cytochrome P4501A, a member of the AHR gene battery, is important to the toxicity of pHAHs, and inhibition of CYP1A can reduce the early-life-stage toxicity of pHAHs. In light of the effects of CYP1A inhibition on pHAH-derived toxicity, we explored the impact of both model and environmentally relevant CYP1A inhibitors on PAH-derived embryotoxicity. We exposed Fundulus heteroclitus embryos to two PAH-type AHR agonists, β-naphthoflavone and benzo(a)pyrene, and one pHAH-type AHR agonist, 3,3′,4,4′,5-pentachlorobiphenyl (PCB-126), alone and in combination with several CYP1A inhibitors. In agreement with previous studies, coexposure of embryos to PCB-126 with the AHR antagonist and CYP1A inhibitor α-naphthoflavone decreased frequency and severity of deformities compared with embryos exposed to PCB-126 alone. In contrast, embryos coexposed to the PAHs with each of the CYP1A inhibitors tested were deformed with increased severity and frequency compared with embryos dosed with PAH alone. The mechanism by which inhibition of CYP1A increased embryotoxicity of the PAHs tested is not understood, but these results may be helpful in elucidating mechanisms by which PAHs are embryotoxic. Additionally, these results call into question additive models of PAH embryotoxicity for environmental PAH mixtures that contain both AHR agonists and CYP1A inhibitors

    A role for Drosophila in understanding drug-induced cytotoxicity and teratogenesis

    No full text
    Drosophila research has been and continues to be an essential tool for many aspects of biological scientific research and has provided insight into numerous genetic, biochemical, and behavioral processes. As well, due to the remarkable conservation of gene function between Drosophila and humans, and the easy ability to manipulate these genes in a whole organism, Drosophila research has proven critical for studying human disease and the physiological response to chemical reagents. Methotrexate, a widely prescribed pharmaceutical which inhibits dihydrofolate reductase and therefore folate metabolism, is known to cause teratogenic effects in human fetuses. Recently, there has been resurgence in the use of methotrexate for inflammatory diseases and ectopic or unwanted pregnancies thus, increasing the need to fully understand the cytotoxicity of this pharmaceutical. Concerns have been raised over the ethics of studying teratogenic drugs like methotrexate in mammalian systems and thus, we have proposed a Drosophila model. We have shown that exposure of female Drosophila to methotrexate results in progeny with developmental abnormalities. We have also shown that methotrexate exposure changes the abundance of many fundamental cellular transcripts. Expression of a dihydrofolate reductase with a reduced affinity for methotrexate can not only prevent much of the abnormal transcript profile but the teratogenesis seen after drug treatment. In the future, such studies may generate useful tools for mammalian antifolate “rescue” therapies
    corecore