7 research outputs found
The interaction between the proliferating macroalga Asparagopsis taxiformis and the coral Astroides calycularis induces changes in microbiome and metabolomic fingerprints
Mediterranean Sea ecosystems are considered as hotspots of biological introductions, exposed to possible negative effects of non-indigenous species. In such temperate marine ecosystems, macroalgae may be dominant, with a great percentage of their diversity represented by introduced species. Their interaction with temperate indigenous benthic organisms have been poorly investigated. To provide new insights, we performed an experimental study on the interaction between the introduced proliferative red alga Asparagopsis taxiformis and the indigenous Mediterranean coral Astroides calycularis. The biological response measurements included meta-barcoding of the associated microbial communities and metabolomic fingerprinting of both species. Significant changes were detected among both associated microbial communities, the interspecific differences decreasing with stronger host interaction. No short term effects of the macroalga on the coral health, neither on its polyp activity or its metabolism, were detected. In contrast, the contact interaction with the coral induced a change in the macroalgal metabolomic fingerprint with a significant increase of its bioactivity against the marine bacteria Aliivibrio fischeri. This induction was related to the expression of bioactive metabolites located on the macroalgal surface, a phenomenon which might represent an immediate defensive response of the macroalga or an allelopathic offense against coral.ERA-NET Biome project "SEAPROLIF"; CNRS; Provence Alpes Cote d'Azur Region; TOTAL Fundation; Fundacao para a Ciencia e a Tecnologia (FCT) [Netbiome/0002/2011]; FCT fellowships [SFRH/BPD/63703/2009, SFRH/BPD/107878/2015]info:eu-repo/semantics/publishedVersio
Cost-effectiveness analysis of guideline-based optimal care for venous leg ulcers in Australia
Background:
Venous leg ulcers (VLUs) are expensive to treat and impair quality of life of affected individuals. Although improved healing and reduced recurrence rates have been observed following the introduction of evidence-based guidelines, a significant evidence-practice gap exists. Compression is the recommended first-line therapy for treatment of VLUs but unlike many other developed countries, the Australian health system does not subsidise compression therapy. The objective of this study is to estimate the cost-effectiveness of guideline-based care for VLUs that includes public sector reimbursement for compression therapy for affected individuals in Australia.
Methods:
A Markov model was designed to simulate the progression of VLU for patients receiving guideline-based optimal prevention and treatment, with reimbursement for compression therapy, and then compared to usual care in each State and Territory in Australia. Model inputs were derived from published literature, expert opinion, and government documents. The primary outcomes were changes to costs and health outcomes from a decision to implement guideline-based optimal care compared with the continuation of usual care. Sensitivity analyses were performed to test the robustness of model results.
Results:
Guideline-based optimal care incurred lower total costs and improved quality of life of patients in all States and Territories in Australia regardless of the health service provider. We estimated that providing compression therapy products to affected individuals would cost the health system an additional AUD 270 million over 5 years but would result in cost savings of about AUD 1.4 billion to the health system over the same period. An evaluation of unfavourable values for key model parameters revealed a wide margin of confidence to support the findings.
Conclusions:
This study shows that guideline-based optimal care would be a cost-effective and cost-saving strategy to manage VLUs in Australia. Results from this study support wider adoption of guideline-based care for VLUs and the reimbursement of compression therapy. Other countries that face similar issues may benefit from investing in guideline-based wound care
Intra-Genomic Ribosomal RNA Polymorphism and Morphological Variation in Elphidium macellum Suggests Inter-Specific Hybridization in Foraminifera
Elphidium macellum is a benthic foraminifer commonly found in the Patagonian fjords. To test whether its highly variable morphotypes are ecophenotypes or different genotypes, we analysed 70 sequences of the SSU rRNA gene from 25 specimens. Unexpectedly, we identified 11 distinct ribotypes, with up to 5 ribotypes co-occurring within the same specimen. The ribotypes differ by varying blocks of sequence located at the end of stem-loop motifs in the three expansion segments specific to foraminifera. These changes, distinct from typical SNPs and indels, directly affect the structure of the expansion segments. Their mosaic distribution suggests that ribotypes originated by recombination of two or more clusters of ribosomal genes. We propose that this expansion segment polymorphism (ESP) could originate from hybridization of morphologically different populations of Patagonian Elphidium. We speculate that the complex geological history of Patagonia enhanced divergence of coastal foraminiferal species and contributed to increasing genetic and morphological variation