4 research outputs found

    Unary probabilistic and quantum automata on promise problems

    Full text link
    We continue the systematic investigation of probabilistic and quantum finite automata (PFAs and QFAs) on promise problems by focusing on unary languages. We show that bounded-error QFAs are more powerful than PFAs. But, in contrary to the binary problems, the computational powers of Las-Vegas QFAs and bounded-error PFAs are equivalent to deterministic finite automata (DFAs). Lastly, we present a new family of unary promise problems with two parameters such that when fixing one parameter QFAs can be exponentially more succinct than PFAs and when fixing the other parameter PFAs can be exponentially more succinct than DFAs.Comment: Minor correction

    On oblivious branching programs with bounded repetition that cannot efficiently compute CNFs of bounded treewidth

    Get PDF
    In this paper we study complexity of an extension of ordered binary decision diagrams (OBDDs) called c-OBDDs on CNFs of bounded (primal graph) treewidth. In particular, we show that for each k ≥ 3 there is a class of CNFs of treewidth k for which the equivalent c-OBDDs are of size Ω(nk/(8c−4)). Moreover, this lower bound holds if c-OBDDs are non-deterministic and semantic. Our second result uses the above lower bound to separate the above model from sentential decision diagrams (SDDs). In order to obtain the lower bound, we use a structural graph parameter called matching width. Our third result shows that matching width and pathwidth are linearly related

    Quantum Queries on Permutations

    No full text
    corecore