82 research outputs found
Post-modification par irradiation g de polymères à base de fluorure de vinylidène (Applications aux membranes séparatrices de supercapacité)
Ce travail porte sur la modification de matrices polymères à base de fluorure de vinylidene pour permettre leur utilisation en tant que membrane séparatrice dans les supercapacités. Basé sur un procédé d irradiation par rayonnement g, l objectif principal était la limitation du gonflement du polymère lorsqu il est mis en contact d un milieu liquide relatif à l application tout en gardant d excellentes affinités avec celui-ci. Le processus de base exploité étant la formation et la réaction des radicaux lors de l irradiation du polymère, une partie de la thèse a été consacrée à leur étude par résonance paramagnétique électronique (RPE). Un modèle de simulation de spectre RPE a été mis en place pour identifier et quantifier chacune des espèces radicalaires. L effet de la dose d irradiation, de la durée d un recuit et de la nature de la matrice polymère (homo, copolymère) sur la proportion de ces espèces et sur leur réactivité a été évalué. Un lien avec la formation d un réseau a été proposé. Une attention particulière a ensuite été apportée à l augmentation de la densité de réticulation avec le concours d un agent réticulant, le TAIC. Pour terminer, une stratégie de modification des propriétés de surface du PVDF a été élaborée. Elle consiste dans un premier temps à radiogreffer un polymère à la surface du PVDF puis à modifier, dans un second temps, les greffons par une chimie douce et sélective. En conclusion, les approches complémentaires développées au cours de cette thèse ont permis de comprendre la radiolyse des polymères et de mettre à profit les processus élémentaires pour développer des stratégies robustes et prometteuses de modulation des propriétés.This work deals with the modification of VDF-based polymer induced by g-radiation as the polymer may be used in electrochemical supercapacitors. The main objective was to limit the swelling of the fluorinated matrix with a given electrolyte while a good wetting of the polymer by the liquid was also required. As the main basic process involved in polymer radiolysis is the formation of radicals, a part of the work was dedicated to the study of such species by using Electron Spin Resonance spectroscopy. A simulation model of ESR spectra was established in order to identify and quantify each radical species. The effect of several parameters such as radiation dose, annealing time or the nature of polymer matrix on the concentration of each species where investigated. A relation with the evolution of the crosslink density of the network formed during the radiolisys was proposed. In addition, one of the key steps of this work was to study the radiation crosslinking ability of VDF-based polymers and find a way to increase the crosslink density. This was achieved by incorporating, prior to the radiation process, a radiation sensitive crosslinker: TAIC. Finally, a new strategy based on the modification of surface properties of PVDF was investigated. It consists in the radiation grafting of pentafluorstyrene onto PVDF surface followed by the chemioselective functionalization of the grafted segments. As a conclusion, the different approaches used in this thesis allowed us to understand the radiolysis of VDF-based polymers and take advantage of the elementary process involved in this type of chemistry, to build up robust and promising strategies for tuning properties.VILLEURBANNE-DOC'INSA-Bib. elec. (692669901) / SudocSudocFranceF
Ultrafast energy transfer from local exciton to intermolecular CT states in a supramolecular model of the donor–acceptor interfaces
Abstract : The donor–acceptor contacts in bulk heterojunctions (BHJ) is the birthplace of primary energy leaks in organic solar cells (OSCs): Voc (voltage at open circuit) losses. These interfaces are the least understood and the least accessible experimentally. A bottom up approach is being used to mimic this interface via supramolecular interactions of two graphene-based materials: reduced graphene oxide, RGO, and, graphene nanoribbon, GNR, with six different pyrene-linked dyes used as probes to assess the photophysical changes observed upon interface formation in a donor–acceptor bulk heterojunction device. These assemblies are secured through strong π–π interactions between pyrene anchors and GNR, and the formation of these probe–GNR assemblies were studied by absorption spectroscopy. A total of 11 static charge transfer (CT) complexes were identified in 6 different donor–acceptor interfaces, and their properties and dynamics were studied by steady state, time-resolved fluorescence and transient absorption spectroscopy. Three distinct cases were identified: (1) nonharvesting CT assemblies, (2) harvesting and emissive CT assemblies, and (3) harvesting but nonemissive CT complexes. The excitons of the GNR chains are rapidly and fully channeled to the CT complex (<1 ps). Depending on the driving force, the formation of long-lived CT states (302–483 ps) is observed. A three-state model with a coupling between a CT state and a local exciton (LE) is used to describe the behavior of this interface. A HOMOGNR–HOMO2PyrPBI energy gap of 0.16 eV is found to be large enough to efficiently promote a pure charge transfer state at the interface
Skiroc: A Front-end Chip to Read Out the Imaging Silicon-Tungsten Calorimeter for ILC
Integration and low-power consumption of the read-out ASIC for the International Linear Collider (ILC) 82-millionchannel W-Si calorimeter must reach an unprecedented level as it will be embedded inside the detector. Uniformity and dynamic range performance has to reach the accuracy to achieve calorimetric measurement. A first step towards this goal has been a 10,000-channel physics prototype of 18*18 cm which is currently in test beam in CERN. A new version of a full integrated read out chip (SKIROC) has been designed to equip the technologic prototype to be built for 2009. Based on the running physics prototype ASIC (FLC_PHY3), it embeds most of the required features expected for the final detector. The dynamic range has been improved from 500 to 2000 MIP. An auto-trigger capability has been added allowing built-in zero suppress. The number of channel has been doubled reaching 36 to fit smaller silicon pads and the lownoise charge preamplifier now accepts both AC and DC coupled detectors. After an exhaustive description, the measurement results of that new front-end chip will be presented. The results on the technological R&D concurrently conducted on the ultra-thin PCB hosting both the front-end electronic and the silicon detectors will also be described
Rackham: An Interactive Robot-Guide
International audienceRackham is an interactive robot-guide that has been used in several places and exhibitions. This paper presents its design and reports on results that have been obtained after its deployment in a permanent exhibition. The project is conducted so as to incrementally enhance the robot functional and decisional capabilities based on the observation of the interaction between the public and the robot. Besides robustness and efficiency in the robot navigation abilities in a dynamic environment, our focus was to develop and test a methodology to integrate human-robot interaction abilities in a systematic way. We first present the robot and some of its key design issues. Then, we discuss a number of lessons that we have drawn from its use in interaction with the public and how that will serve to refine our design choices and to enhance robot efficiency and acceptability
Long-term analysis of the RiBVD phase II trial reveals the unfavorable impact of <i>TP53</i> mutations and hypoalbuminemia in older adults with mantle cell lymphoma; for the LYSA group
Between 2011 and 2012, a phase II trial evaluated the use of the RiBVD (rituximab, bendamustine, velcade and dexamethasone) combination as first-line treatment for mantle cell lymphoma (MCL) patients over the age of 65. We have now re-examined the classic prognostic factors, adding an assessment of TP53 mutation status. Patients (N=74; median age 73 years) were treated with the RiBVD combination. Median progression-free survival (mPFS) was 79 months and median overall survival (mOS) was 111 months. TP53 mutation status was available for 54/74 (73%) patients. TP53 mutations (TP53mt) were found in 12 patients (22.2%). In multivariate analysis, among the prognostic factors (PF) evaluated, only TP53mt and an albumin level (Alb) 3.6 g/dL were independently associated with a shorter mPFS. A hazard ratio (HR) of 3.16 (1.3-9.9, P=0.014) was obtained for TP53mt versus TP53 wild-type (wt), and 3.6 (1.39-9.5, P=0.009) for Alb <3.6 g/dL versus Alb ≥3.6 g/dL. In terms of mOS, multivariate analysis identified three PF: TP53mt (HR: 5.9 [1.77-19.5, P=0.004]), Alb <3.6 g/dL (HR: 5.2 [1.46- 18.5, P=0.011]), and ECOG=2 (HR: 3.7 [1.31-10.6, P=0.014]). Finally, a score combining TP53 status and Alb distinguished three populations based on the presence of 0, 1, or 2 PF. For these populations, mPFS was 7.8 years, 28 months, and 2.5 months, respectively. Our prolonged follow-up confirmed the efficacy of the RiBVD regimen, comparing it favorably to other regimens. TP53mt and hypoalbuminemia emerge as strong PF that can be easily integrated into prognostic scores for older adult patients with MCL
Enabling planetary science across light-years. Ariel Definition Study Report
Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution
Recommended from our members
Research and Design of a Routing Protocol in Large-Scale Wireless Sensor Networks
无线传感器网络,作为全球未来十大技术之一,集成了传感器技术、嵌入式计算技术、分布式信息处理和自组织网技术,可实时感知、采集、处理、传输网络分布区域内的各种信息数据,在军事国防、生物医疗、环境监测、抢险救灾、防恐反恐、危险区域远程控制等领域具有十分广阔的应用前景。 本文研究分析了无线传感器网络的已有路由协议,并针对大规模的无线传感器网络设计了一种树状路由协议,它根据节点地址信息来形成路由,从而简化了复杂繁冗的路由表查找和维护,节省了不必要的开销,提高了路由效率,实现了快速有效的数据传输。 为支持此路由协议本文提出了一种自适应动态地址分配算——ADAR(AdaptiveDynamicAddre...As one of the ten high technologies in the future, wireless sensor network, which is the integration of micro-sensors, embedded computing, modern network and Ad Hoc technologies, can apperceive, collect, process and transmit various information data within the region. It can be used in military defense, biomedical, environmental monitoring, disaster relief, counter-terrorism, remote control of haz...学位:工学硕士院系专业:信息科学与技术学院通信工程系_通信与信息系统学号:2332007115216
- …