159 research outputs found

    ‘Green’ on the ground but not in the air: Pro-environmental attitudes are related to household behaviours but not discretionary air travel

    Get PDF
    The rise in greenhouse gas emissions from air travel could be reduced by individuals voluntarily abstaining from, or reducing, flights for leisure and recreational purposes. In theory, we might expect that people with pro-environmental value orientations and concerns about the risks of climate change, and those who engage in more pro-environmental household behaviours, would also be more likely to abstain from such voluntary air travel, or at least to fly less far. Analysis of two large datasets from the United Kingdom, weighted to be representative of the whole population, tested these associations. Using zero-inflated Poisson regression models, we found that, after accounting for potential confounders, there was no association between individuals’ environmental attitudes, concern over climate change, or their routine pro-environmental household behaviours, and either their propensity to take non-work related flights, or the distances flown by those who do so. These findings contrasted with those for pro-environmental household behaviours, where associations with environmental attitudes and concern were observed. Our results offer little encouragement for policies aiming to reduce discretionary air travel through pro-environmental advocacy, or through ‘spill-over’ from interventions to improve environmental impacts of household routines

    Demonstration of a novel technique to measure two-photon exchange effects in elastic e±pe^\pm p scattering

    Full text link
    The discrepancy between proton electromagnetic form factors extracted using unpolarized and polarized scattering data is believed to be a consequence of two-photon exchange (TPE) effects. However, the calculations of TPE corrections have significant model dependence, and there is limited direct experimental evidence for such corrections. We present the results of a new experimental technique for making direct e±pe^\pm p comparisons, which has the potential to make precise measurements over a broad range in Q2Q^2 and scattering angles. We use the Jefferson Lab electron beam and the Hall B photon tagger to generate a clean but untagged photon beam. The photon beam impinges on a converter foil to generate a mixed beam of electrons, positrons, and photons. A chicane is used to separate and recombine the electron and positron beams while the photon beam is stopped by a photon blocker. This provides a combined electron and positron beam, with energies from 0.5 to 3.2 GeV, which impinges on a liquid hydrogen target. The large acceptance CLAS detector is used to identify and reconstruct elastic scattering events, determining both the initial lepton energy and the sign of the scattered lepton. The data were collected in two days with a primary electron beam energy of only 3.3 GeV, limiting the data from this run to smaller values of Q2Q^2 and scattering angle. Nonetheless, this measurement yields a data sample for e±pe^\pm p with statistics comparable to those of the best previous measurements. We have shown that we can cleanly identify elastic scattering events and correct for the difference in acceptance for electron and positron scattering. The final ratio of positron to electron scattering: R=1.027±0.005±0.05R=1.027\pm0.005\pm0.05 for =0.206=0.206 GeV2^2 and 0.830≀ϔ≀0.9430.830\leq \epsilon\leq 0.943

    Soluble Urokinase Plasminogen Activator Receptor: Genetic Variation and Cardiovascular Disease Risk in Black Adults

    Get PDF
    BACKGROUND: suPAR (Soluble urokinase plasminogen activator receptor) has emerged as an important biomarker of coagulation, inflammation, and cardiovascular disease (CVD) risk. The contribution of suPAR to CVD risk and its genetic influence in Black populations have not been evaluated. METHODS: We measured suPAR in 3492 Black adults from the prospective, community-based JHS (Jackson Heart Study). Cross-sectional associations of suPAR with lifestyle and CVD risk factors were assessed, whole-genome sequence data were used to evaluate genetic associations of suPAR, and relationships of suPAR with incident CVD outcomes and overall mortality were estimated over follow-up. RESULTS: In Cox models adjusted for traditional CVD risk factors, estimated glomerular filtration rate, and CRP (C-reactive protein), each 1-SD higher suPAR was associated with a 21% to 31% increased risk of incident coronary heart disease, heart failure, stroke, and mortality. In the genome-wide association study, 2 missense (rs399145 encoding p.Thr86Ala, rs4760 encoding p.Phe272Leu) and 2 noncoding regulatory variants (rs73935023 within an enhancer element and rs4251805 within the promoter) of PLAUR on chromosome 19 were each independently associated with suPAR and together explained 14% of suPAR phenotypic variation. The allele frequencies of each of the four suPAR-associated genetic variants differ considerably across African and European populations. We further show that PLAUR rs73935023 can alter transcriptional activity in vitro. We did not find any association between genetically determined suPAR and CVD in JHS or a larger electronic medical record-based analyses of Blacks or Whites. CONCLUSIONS: Our results demonstrate the importance of ancestry-differentiated genetic variation on suPAR levels and indicate suPAR is a CVD biomarker in Black adults

    Towards an understanding of neuroscience for science educators

    Get PDF
    Advances in neuroscience have brought new insights to the development of cognitive functions. These data are of considerable interest to educators concerned with how students learn. This review documents some of the recent findings in neuroscience, which is richer in describing cognitive functions than affective aspects of learning. A brief overview is presented here of the techniques used to generate data from imaging and how these findings have the possibility to inform educators. There are implications for considering the impact of neuroscience at all levels of education – from the classroom teacher and practitioner to policy. This relatively new cross-disciplinary area of research implies a need for educators and scientists to engage with each other. What questions are emerging through such dialogues between educators and scientists are likely to shed light on, for example, reward, motivation, working memory, learning difficulties, bilingualism and child development. The sciences of learning are entering a new paradigm

    Quasielastic axial-vector mass from experiments on neutrino-nucleus scattering

    Get PDF
    We analyze available experimental data on the total and differential charged-current cross sections for quasielastic neutrino and antineutrino scattering off nucleons, measured with a variety of nuclear targets in the accelerator experiments at ANL, BNL, FNAL, CERN, and IHEP, dating from the end of sixties to the present day. The data are used to adjust the poorly known value of the axial-vector mass of the nucleon.Comment: 27 pages, 19 figures. Typos corrected; tables, figures and references added, discussion extended; matches published versio

    Strangeness Suppression of q(q)over-bar Creation Observed in Exclusive Reactions

    Get PDF
    We measured the ratios of electroproduction cross-sections from a proton target for three exclusive meson-baryon final states: ΛK+\Lambda K^+, pπ0p\pi^0, and nπ+n\pi^+, with the CLAS detector at Jefferson Lab. Using a simple model of quark hadronization we extract q-qbar creation probabilities for the first time in exclusive two-body production, in which only a single q-qbar pair is created. We observe a sizable suppression of strange quark-antiquark pairs compared to non-strange pairs, similar to that seen in high-energy production.Comment: 5pages, 2figure

    Target and double spin asymmetries of deeply virtual pi(0) production with a longitudinally polarized proton target and CLAS

    Get PDF
    The target and double spin asymmetries of the exclusive pseudoscalar channel e⃗p⃗→epπ0\vec e\vec p\to ep\pi^0 were measured for the first time in the deep-inelastic regime using a longitudinally polarized 5.9 GeV electron beam and a longitudinally polarized proton target at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS). The data were collected over a large kinematic phase space and divided into 110 four-dimensional bins of Q2Q^2, xBx_B, −t-t and ϕ\phi. Large values of asymmetry moments clearly indicate a substantial contribution to the polarized structure functions from transverse virtual photon amplitudes. The interpretation of experimental data in terms of generalized parton distributions (GPDs) provides the first insight on the chiral-odd GPDs H~T\tilde{H}_T and ETE_T, and complement previous measurements of unpolarized structure functions sensitive to the GPDs HTH_T and EˉT\bar E_T. These data provide necessary constraints for chiral-odd GPD parametrizations and will strongly influence existing theoretical handbag models
    • 

    corecore