52 research outputs found

    Remodeling the Proteostasis Network to Rescue Glucocerebrosidase Variants by Inhibiting ER-Associated Degradation and Enhancing ER Folding

    Get PDF
    Gaucher’s disease (GD) is characterized by loss of lysosomal glucocerebrosidase (GC) activity. Mutations in the gene encoding GC destabilize the protein’s native folding leading to ER-associated degradation (ERAD) of the misfolded enzyme. Enhancing the cellular folding capacity by remodeling the proteostasis network promotes native folding and lysosomal activity of mutated GC variants. However, proteostasis modulators reported so far, including ERAD inhibitors, trigger cellular stress and lead to induction of apoptosis. We show herein that lacidipine, an L-type Ca2+ channel blocker that also inhibits ryanodine receptors on the ER membrane, enhances folding, trafficking and lysosomal activity of the most severely destabilized GC variant achieved via ERAD inhibition in fibroblasts derived from patients with GD. Interestingly, reprogramming the proteostasis network by combining modulation of Ca2+ homeostasis and ERAD inhibition remodels the unfolded protein response and dramatically lowers apoptosis induction typically associated with ERAD inhibition

    On the mechanism of action of econazole, the capacitative calcium inflow blocker.

    No full text
    The ability of bovine serum albumin to reverse the inhibitory action of econazole and the unsaturated fatty acid oleate on store-dependent Ca2+ inflow was examined in Ehrlich ascites tumour cells. We report that inhibition of Ca2+ inflow by both compounds is reversed immediately upon addition of bovine serum albumin. It is concluded that the inhibitory action of econazole resembles that of unsaturated fatty acids. The mechanism appears to be one pertaining to nonspecific events at the plasma membrane, possibly involving alterations in plasma membrane fluidity/structure

    Effect of nifedipine on capacitive calcium entry in Jurkat T lymphocytes

    No full text
    The effect of nifedipine-an antagonist of L-type calcium (Ca(2+)) channels-on capacitative Ca(2+) entry (CCE) was studied in Jurkat T lymphocytes. CCE was induced by a variety of treatments each of which depleted intracellular Call stores. Cells were treated with thapsigargin, ionomycin, anti-CD3 antibodies, and phyto-haemagglutinin, or pre-incubated in a Ca(2+)-free medium. Activity of CCE was evaluated with a Ca(2+)-free/Ca(2+)-readmission protocol, in Fluo-3 pre-loaded cells. Nifedipine inhibited CCE in a dose-dependent manner. CCE inhibition was not due to non-specific effects on K(+) channels. Nifedipine, did not induce any membrane depolarization, as revealed by measurements of the plasma membrane potential with the fluorescent probe bis-oxonol. Moreover, experiments done under depolarizing conditions (i.e. by substituting Na(+) with K(+) ions in the medium) revealed that nifedipine could inhibit capacitative Ca(2+) entry independently of plasma membrane depolarization. We also demonstrated the presence in our Jurkat T-cells of transcripts for Ca(V)1.3 (alpha(1D)) and Ca(V)1.4 (alpha(1F)) L-type Ca(2+) channels. Verapamil and diltiazem, two unrelated blockers of L-type Ca(2+) channels, were less inhibitory on CCE. Possible mechanisms by which nifedipine interferes with Ca(2+) entry in these cells are discussed

    Radiation Induced Bystander Effects in Mice Given Low Doses of Radiation in Vivo

    Get PDF
    The ‘bystander effect’ phenomenon has challenged the traditional framework for assessing radiation damage by showing radiation induced changes in cells which have not been directly targeted, but are neighbors to or receive medium from directly hit cells. Our group performed a range of single and serial low dose irradiations on two genetically distinct strains of mice. Bladder explants established from these mice were incubated in culture medium, which was used to measure death responses in a keratinocyte reporter system. The study revealed that the medium harvested from bladder tissues’ (ITCM) from acutely irradiated C57BL6 but not Balb/c mice, was able to induce clonogenic death. Administration of a priming dose(s) before a challenge dose to both C57BL6 and Balb/c mice stimulated reporter cell survival irrespective of the time interval between dose(s) delivery. When ITCM corresponding to both strains of mice was measured for its calcium mobilization inducing ability, results showed an elevation in intracellular calcium levels that was strain dependent. This indicates that genotype determined the type of bystander signal/response that was produced after exposure to low and acute doses of radiation. However, serial exposure conditions modified bystander signal production to induce similar effects that were characterized by excessive growth
    • …
    corecore