54 research outputs found

    A composite immune signature parallels disease progression across T1D subjects

    Get PDF
    At diagnosis, most people with type 1 diabetes (T1D) produce measurable levels of endogenous insulin, but the rate at which insulin secretion declines is heterogeneous. To explain this heterogeneity, we sought to identify a composite signature predictive of insulin secretion, using a collaborative assay evaluation and analysis pipeline that incorporated multiple cellular and serum measures reflecting beta cell health and immune system activity. The ability to predict decline in insulin secretion would be useful for patient stratification for clinical trial enrollment or therapeutic selection. Analytes from 12 qualified assays were measured in shared samples from subjects newly diagnosed with T1D. We developed a computational tool to identify a composite panel associated with decline in insulin secretion over 2 years after diagnosis. The tool employs multiple filtering steps to reduce data dimensionality, incorporates error-estimation techniques including cross-validation and sensitivity analysis, and is flexible to assay type, clinical outcome and disease setting. Using this novel analytical tool, we identified a panel of immune markers that, in combination, are highly associated with loss of insulin secretion. The methods used here represent a novel process for identifying combined immune signatures that predict outcomes relevant for complex and heterogeneous diseases like T1D

    Species and epitope specificity of two 65 kDa glutamate decarboxylase time-resolved fluorometric immunoassays.

    No full text
    The 65 kDa isoform of human glutamate decarboxylase (GAD65) is a major autoantigen in type 1 diabetes (T1D). In the present study, we have developed a sensitive sandwich time-resolved fluorescence immunoassay (TRFIA) for the quantification of GAD65 in cell extracts, cell media and serum. The monoclonal antibody GAD-6 is used to selectively capture GAD65 but not the slightly larger isoform GAD67, and the utilization of different detecting antibodies with distinct GAD65 epitope specificity allows modulating the specificity of the assay. To this effect we have biotinylated a recombinant antigen-binding fragment (rFab) with epitope specificity for the N-terminal region of rat and human GAD65 (rFab N-GAD65) and another rFab that selectively binds to the middle part of human GAD65 (rFab b96.11). In the assay the biotinylated rFabs are recognized by Europium labeled streptavidin. The obtained time-resolved fluorescence (TRF) is directly proportional to the concentration of GAD65 over a large measuring range (0.1 to > 100 ng/mL). Based on total error estimation including both bias and imprecision, the lower limit of quantitation (LLOQ) of GAD65 in cell extracts is 0.33 ng/mL with the N-GAD65 TRFIA, and 0.10 ng/mL with the b96.11 TRFIA, but the latter is suitable for human GAD65 only, whereas the N-GAD65 TRFIA has equal sensitivity with rat and human GAD65. Specificity was further checked with GAD65/67 fusion proteins, confirming that the presence of intact capture as well as detection epitope on the analyte is a prerequisite for recognition in both assays. We show that the beta cell-specific marker GAD65 can be quantified in pancreatic cell extracts and in serum, allowing studies on discharge during cell death in vitro as well as in vivo

    An important minority of prediabetic first-degree relatives of type 1 diabetic patients derives from seroconversion to persistent autoantibody positivity after 10 years of age

    No full text
    The appearance of autoantibodies (Abs) before diabetes onset has mainly been studied in young children. However, most patients develop type 1 diabetes after the age of 15 years. In first-degree relatives aged under 40 years, we investigated the frequency of seroconversion to (persistent) Ab positivity, progression to diabetes and baseline characteristics of seroconverters according to age. Abs against insulin (IAA), glutamate decarboxylase (GADA), insulinoma-associated protein 2 (IA-2A) and zinc transporter 8 (ZnT8A) were measured during follow-up of 7,170 first-degree relatives. We identified 379 (5.3%) relatives with positivity for IAA, GADA, IA-2A and/or ZnT8A (Ab(+)) at first sampling and 224 (3.1%) at a later time point. Most seroconversions occurred after the age of 10 years (63%). During follow-up, Abs persisted more often in relatives initially Ab(+) (76%) than in seroconverters (53%; p < 0.001). In both groups diabetes developed at a similar pace and almost exclusively with Ab persistence (136 of 139 prediabetic individuals). For both groups, progression was more rapid if Abs appeared before the age of 10 years. Baseline characteristics at seroconversion did not vary significantly according to age. Seroconversion to (persistent) Ab(+) occurs regardless of age. Although the progression rate to diabetes is higher under age 10 years, later seroconverters (up to age 40 years) have similar characteristics when compared with age-matched initially Ab(+) relatives and generate an important minority of prediabetic relatives, warranting their identification and, eventually, enrolment in prevention trials
    • …
    corecore