11 research outputs found

    Different substrate specificities of the two ADPR binding sites in TRPM2 channels of Nematostella vectensis and the role of IDPR

    No full text
    NvTRPM2 (Nematostella vectensis Transient Receptor Potential Melastatin 2), the species variant of the human apoptosis-related cation channel hTRPM2, is gated by ADP-ribose (ADPR) independently of the C-terminal NUDT9H domain that mediates ADPR-directed gating in hTRPM2. The decisive binding site in NvTRPM2 is likely to be identical with the N-terminal ADPR binding pocket in zebra fish DrTRPM2. Our aim was a characterization of this binding site in NvTRPM2 with respect to its substrate specificity, in comparison to the classical ADPR interaction site within NUDT9H that is highly homologous in hTRPM2 and NvTRPM2, although only in NvTRPM2, catalytic (ADPRase) activity is conserved. With various ADPR analogues, key differences of the two sites were identified. Particularly, two reported antagonists on hTRPM2 were agonists on NvTRPM2. Moreover, IDP-ribose (IDPR) induced currents both in hTRPM2 and NvTRPM2 but not in NvTRPM2 mutants in which NUDT9H was absent. Thus, IDPR acts on NUDT9H rather than N-terminally, revealing a regulatory function of NUDT9H in NvTRPM2 opposed to that in hTRPM2. We propose that IDPR competitively inhibits the ADPRase function of NUDT9H and evokes ADPR accumulation. The findings provide important insights into the structure-function relationship of NvTRPM2 and will allow further characterization of the novel ADPR interaction site

    Transient receptor potential melastatin 2 expression is increased following experimental traumatic brain injury in rats

    No full text
    Traumatic brain injury (TBI) elicits a sequence of complex biochemical changes including oxidative stress, oedema, inflammation and excitotoxicity. These factors contribute to the high morbidity and mortality following TBI, although their underlying molecular mechanisms remain poorly understood. Transient receptor potential melastatin 2 (TRPM2) is a non-selective cation channel, highly expressed in the brain and immune cells. Recent studies have implicated TRPM2 channels in processes involving oxidative stress, inflammation and cell death. However, no studies have investigated the role of TRPM2 in TBI pathophysiology. In the present study, we have characterised TRPM2 mRNA and protein expression following experimental TBI. Adult male Sprague Dawley rats were injured using the impact-acceleration model of diffuse TBI with survival times between 5 and 5 days. Real-time RT-PCR (including reference gene validation studies) and semi-quantitative immunohistochemistry were used to quantify TRPM2 mRNA and protein levels, respectively, following TBI. Significant increases in TRPM2 mRNA and protein expression were observed in the cerebral cortex and hippocampus of injured animals, suggesting that TRPM2 may contribute to TBI injury processes such as oxidative stress, inflammation and neuronal death. Further characterisation of how TRPM2 may contribute to TBI pathophysiology is warranted.Naomi L. Cook, Robert Vink, Stephen C. Helps, Jim Manavis and Corinna van den Heuve
    corecore