23 research outputs found

    Durability of the anti-erosive effect of surfaces sealants under erosive abrasive conditions

    Full text link
    OBJECTIVE: To test the durability of sealants applied for prevention of erosive dentine mineral loss under erosive/abrasive conditions. METHODS: Forty-eight bovine dentine samples doped with (32)P were randomly allocated to four groups (1-4). All samples performed a de- and remineralizations pre-cycling (6 × 1 min erosion in HCl: pH 3.0, mean time and overnight immersion in artificial saliva) for 1 day. Sealing was done as follows; (1) unsealed, (2) Seal & Protect, (3) K-0184 (experimental sealer) and (4) OptiBond FL. After sealing, samples were immersed in HCl for 3 h (baseline measurement). Then, the following erosive/abrasive and remineralisations cycling was performed for 8 days: 3 h/day erosion with HCl, 600 brushing strokes/day and storage in artificial saliva for the rest of the day. Sealer permeability was evaluated by assignation of (32)P in the acid used for the erosive attacks. RESULTS: At baseline, the significantly highest dentine loss was observed for the unsealed control group, while the mineral loss was not statistically significantly different between the sealed groups 2 and 3. At all days of the erosive/abrasive and remineralizations cycling and cumulatively the significantly highest mineral loss was observed for group 1, while the significantly lowest mineral loss was observed for the samples sealed with Seal & Protect (group 2) and K-0184 (group 3). In all groups, no significant increase in the (32)P release was observed. CONCLUSION: Surface sealants are able to reduce the erosive dentine mineral loss and maintain this erosion-preventing efficacy over the whole duration (simulating 8 month in-vivo) of the erosive/abrasive cycling

    Influence of light-curing mode on the cytotoxicity of resin-based surface sealants

    Get PDF
    Background Surface sealants have been successfully used in the prevention of erosive tooth wear. However, when multiple tooth surfaces should be sealed, the light-curing procedure is very time-consuming. Therefore, the aim of this study was to investigate whether reduced light-curing time (while maintaining similar energy density) has an influence on resin-based surface sealant cytotoxicity. Methods Bovine dentine discs were treated as follows: group 1: untreated, groups 2–5: Seal&Protect and groups 6–9: experimental sealer. Groups 2 and 6 were light-cured (VALO LED light-curing device) for 40 s (1000 mW/cm2), groups 3 and 7 for 10 s (1000 mW/cm2), groups 4 and 8 for 7 s (1400 mW/cm2) and groups 5 and 9 for 3 s (3200 mW/cm2). Later, materials were extracted in culture medium for 24 h, and released lactate dehydrogenase (LDH) activity as a measure of cytotoxicity was determined photometrically after cells (dental pulp cells and gingival fibroblasts) were exposed to the extracts for 24 h. Three independent experiments, for both sample preparation and cytotoxicity testing, were performed. Results Overall, lowest cytotoxicity was observed for the unsealed control group. No significant influence of light-curing settings on the cytotoxicity was observed (p = 0.537 and 0.838 for pulp cells and gingival fibroblasts, respectively). No significant difference in the cytotoxicity of the two sealants was observed after light-curing with same light-curing settings (group 2 vs. 6, 3 vs. 7, 4 vs. 8 and 5 vs. 9: p > 0.05, respectively). Conclusions Shortening the light-curing time, while maintaining constant energy density, resulted in no higher cytotoxicity of the investigated sealants

    Cerium chloride reduces enamel lesion initiation and progression in vitro

    Get PDF
    Aim: Determination of the potential of cerium chloride to reduce artificial carious mineral loss and lesion depth progression. Methods: A total of 160 enamel samples were prepared from 40 bovine lower central incisors. Crowns were sectioned into four pieces, embedded in acrylic resin, ground flat and allocated to eight groups (S1-S4 and D1-D4; n = 20). Specimens of groups D1-D4 were stored (for 7 days) in a demineralizing buffer solution to induce caries-like lesions. Afterwards, samples were treated for 30 s with one of the following solutions: placebo (S1 and D1), amine fluoride (S2 and D2), cerium chloride (S3 and D3) and a combination of fluoride and cerium chloride (S4 and D4). After another 7 (D1-D4) or 14 (S1-S4) days in demineralizing buffer solution, integrated mineral loss and lesion depth were determined by transversal microradiography and compared by Scheffé's post hoc tests. Results: In groups S1-S4, the highest values for integrated mineral loss and lesion depth were observed for group S1 (placebo), the lowest values for group S4. The results in groups S2-S4 were not significantly different. In groups D1-D4, the highest values for integrated mineral loss and lesion depth were observed for group D1 (placebo), the lowest values in groups D3 and D4. In group D2, integrated mineral loss and lesion depth were significantly lower as compared to D1, but significantly higher compared to groups D3 and D4. Conclusion: Cerium chloride and its combination with fluoride are able to significantly reduce carious mineral loss and the progression of lesion depth. © 2013 S. Karger AG, Basel

    Influence of prophylaxis paste treatment on the abrasive wear of surface sealants

    Full text link
    OBJECTIVE: To investigate the abrasive wear of surface sealants (Seal&Protect and K-0184 (experimental sealant)) and the influence of pre-treatment with mineral deposit forming prophylaxis pastes (NUPRO Sensodyne and NUPRO) on this wear. METHODS: One hundred and eight bovine dentine samples were randomly allocated to nine groups (1-9). Pre-treatment (10 s): groups 1-3: untreated, groups 4-6: NUPRO, groups 7-9: NUPRO Sensodyne. Sealing: groups 1, 4 and 7: unsealed, groups 2, 5 and 8: Seal&Protect, groups 3, 6 and 9: K-0184 (experimental sealer). Samples were then brushed with 12 000 brushing strokes (BS) with toothpaste slurry in an automatic brushing machine (120 BS/min; F = 2.5 N). Surface profiles were recorded at baseline, after pre-treatment and sealing and after each 2000 BS. RESULTS: Total profile change (wear or gain due to pre-treatment, treatment and 12 000 BS): groups 1, 4 and 7 (no surface sealant) showed a not significantly different wear of 18.48 ± 2.63 ”m, 24.98 ± 3.02 ”m and 21.50 ± 5.47 ”m, respectively. Remaining groups (sealed) showed a gain in height with no significant difference among each other. Wear in sealed groups (2, 3, 5, 6, 8 and 9) were not significantly different at all numbers of brushing strokes. Starting with 4000 BS, the wear in unsealed groups (1, 4 and 7) was statistically significantly higher compared to all other groups. CONCLUSION: Stability and wear resistance of surface sealants are not affected by pre-treatment of dentine with NUPRO Sensodyne. The surface sealants tested provide a stable protective surface layer on dentine, which lasts for at least 12 000 brushing strokes
    corecore