25 research outputs found

    Resolution of complex fluorescence spectra of lipids and nicotinic acetylcholine receptor by multivariate analysis reveals protein-mediated effects on the receptor's immediate lipid microenvironment

    Get PDF
    Analysis of fluorescent spectra from complex biological systems containing various fluorescent probes with overlapping emission bands is a challenging task. Valuable information can be extracted from the full spectra, however, by using multivariate analysis (MA) of measurements at different wavelengths. We applied MA to spectral data of purified Torpedo nicotinic acetylcholine receptor (AChR) protein reconstituted into liposomes made up of dioleoylphosphatidic acid (DOPA) and dioleoylphosphatidylcholine (DOPC) doped with two extrinsic fluorescent probes (NBD-cholesterol/pyrene-PC). Förster resonance energy transfer (FRET) was observed between the protein and pyrene-PC and between pyrene-PC and NBD-cholesterol, leading to overlapping emission bands. Partial least squares analysis was applied to fluorescence spectra of pyrene-PC in liposomes with different DOPC/DOPA ratios, generating a model that was tested by an internal validation (leave-one-out cross-validation) and was further used to predict the apparent lipid molar ratio in AChR-containing samples. The values predicted for DOPA, the lipid with the highest Tm, indicate that the protein exerts a rigidifying effect on its lipid microenvironment. A similar conclusion was reached from excimer formation of pyrene-PC, a collisional-dependent phenomenon. The excimer/monomer ratio (E/M) at different DOPC/DOPA molar ratios revealed the restricted diffusion of the probe in AChR-containing samples in comparison to pure lipid samples devoid of protein. FRET from the AChR (donor) to pyrene-PC (acceptor) as a function of temperature was found to increase with increasing temperature, suggesting a shorter distance between AChR and pyrene PC. Taken together, the results obtained by MA on complex spectra indicate that the AChR rigidifies its surrounding lipid and prefers DOPA rather than DOPC in its immediate microenvironment

    Verticillium wilt of olive: a case study to implement an integrated strategy to control a soil-borne pathogen

    Full text link

    Multi-criteria decision analysis with goal programming in engineering, management and social sciences: a state-of-the art review

    Full text link

    Characterization of herpes simplex virus 1 strains as platforms for the development of oncolytic viruses against liver cancer

    No full text
    Abstract BACKGROUND: Diverse oncolytic viruses (OV) are being designed for the treatment of cancer. The characteristics of the parental virus strains may influence the properties of these agents. AIMS: To characterize two herpes simplex virus 1 strains (HSV-1 17syn(+) and HFEM) as platforms for virotherapy against liver cancer. METHODS: The luciferase reporter gene was introduced in the intergenic region 20 locus of both HSV-1 strains, giving rise to the Cgal-Luc and H6-Luc viruses. Their properties were studied in hepatocellular carcinoma (HCC) cells in vitro. Biodistribution was monitored by bioluminescence imaging (BLI) in athymic mice and immune-competent Bab/c mice. Immunogenicity was studied by MHC-tetramer staining, in vivo killing assays and determination of specific antibody production. Intratumoural transgene expression and oncolytic effect were studied in HuH-7 xenografts. RESULTS: The H6-Luc virus displayed a syncytial phenotype and showed higher cytolytic effect on some HCC cells. Upon intravenous or intrahepatic injection in mice, both viruses showed a transient transduction of the liver with rapid relocalization of bioluminescence in adrenal glands, spinal cord, uterus and ovaries. No significant differences were observed in the immunogenicity of these viruses. Local intratumoural administration caused progressive increase in transgene expression during the first 5 days and persisted for at least 2 weeks. H6-Luc achieved faster amplification of transgene expression and stronger inhibition of tumour growth than Cgal-Luc, although toxicity of these non-attenuated viruses should be reduced to obtain a therapeutic effect. CONCLUSIONS: The syncytial H6-Luc virus has a strong oncolytic potential on human HCC xenografts and could be the basis for potent OV
    corecore