134 research outputs found

    The guinea pig ileum lacks the direct, high-potency, M2-muscarinic, contractile mechanism characteristic of the mouse ileum

    Get PDF
    We explored whether the M2 muscarinic receptor in the guinea pig ileum elicits a highly potent, direct-contractile response, like that from the M3 muscarinic receptor knockout mouse. First, we characterized the irreversible receptor-blocking activity of 4-DAMP mustard in ileum from muscarinic receptor knockout mice to verify its M3 selectivity. Then, we used 4-DAMP mustard to inactivate M3 responses in the guinea pig ileum to attempt to reveal direct, M2 receptor-mediated contractions. The muscarinic agonist, oxotremorine-M, elicited potent contractions in ileum from wild-type, M2 receptor knockout, and M3 receptor knockout mice characterized by negative log EC50 (pEC50) values ± SEM of 6.75 ± 0.03, 6.26 ± 0.05, and 6.99 ± 0.08, respectively. The corresponding Emax values in wild-type and M2 receptor knockout mice were approximately the same, but that in the M3 receptor knockout mouse was only 36% of wild type. Following 4-DAMP mustard treatment, the concentration–response curve of oxotremorine-M in wild-type ileum resembled that of the M3 knockout mouse in terms of its pEC50, Emax, and inhibition by selective muscarinic antagonists. Thus, 4-DAMP mustard treatment appears to inactivate M3 responses selectively and renders the muscarinic contractile behavior of the wild-type ileum similar to that of the M3 knockout mouse. Following 4-DAMP mustard treatment, the contractile response of the guinea pig ileum to oxotremorine-M exhibited low potency and a competitive-antagonism profile consistent with an M3 response. The guinea pig ileum, therefore, lacks a direct, highly potent, M2-contractile component but may have a direct, lower potency M2 component

    Muscarinic receptor subtypes and signalling involved in the attenuation of isoprenaline-induced rat urinary bladder relaxation

    Get PDF
    β-Adrenoceptors are important mediators of smooth muscle relaxation in the urinary bladder, but the concomitant presence of a muscarinic agonist, e.g., carbachol, can attenuate relaxation responses by reducing potency and/or efficacy of β-adrenoceptor agonists such as isoprenaline. Therefore, the present study was designed to explore the subtypes and signalling pathways of muscarinic receptors involved in the attenuation of isoprenaline-induced isolated rat detrusor preparations using novel subtype-selective receptor ligands. In radioligand binding studies, we characterized BZI to be a M3-sparing muscarinic agonist, providing selective M2 stimulation in rat bladder, and THRX-182087 as a highly M2-selective antagonist. The use of BZI and of THRX-182087 in the presence of carbachol enabled experimental conditions with a selective stimulation of only M2 or M3 receptors, respectively. Confirming previous findings, carbachol attenuated isoprenaline-induced detrusor relaxation. M2-selective stimulation partly mimicked this attenuation, indicating that both M2 and M3 receptors are involved. During M3-selective stimulation, the attenuation of isoprenaline responses was reduced by the phospholipase C inhibitor U 73,122 but not by the protein kinase C inhibitor chelerythrine. We conclude that both M2 and M3 receptors contribute to attenuation of β-adrenoceptor-mediated relaxation of rat urinary bladder; the signal transduction pathway involved in the M3 component of this attenuation differs from that mediating direct contractile effects of M3 receptors

    Monoclonal anti-β1-adrenergic receptor antibodies activate G protein signaling in the absence of β-arrestin recruitment

    Get PDF
    Thermostabilized G protein-coupled receptors used as antigens for in vivo immunization have resulted in the generation of functional agonistic anti-β1-adrenergic (β1AR) receptor monoclonal antibodies (mAbs). The focus of this study was to examine the pharmacology of these antibodies to evaluate their mechanistic activity at β1AR. Immunization with the β1AR stabilized receptor yielded five stable hybridoma clones, four of which expressed functional IgG, as determined in cell-based assays used to evaluate cAMP stimulation. The antibodies bind diverse epitopes associated with low nanomolar agonist activity at β1AR, and they appeared to show some degree of biased signaling as they were inactive in an assay measuring signaling through β-arrestin. In vitro characterization also verified different antibody-receptor interactions reflecting the different epitopes on the extracellular surface of β1AR to which the mAbs bind. The anti-β1AR mAbs only demonstrated agonist activity when in dimeric antibody format, but not as the monomeric Fab format, suggesting that agonist activation may be mediated through promoting receptor dimerization. Finally, we have also shown that at least one of these antibodies exhibits in vivo functional activity at a therapeutically-relevant dose producing an increase in heart rate consistent with β1AR agonism

    Effect of pre-contraction on β-adrenoceptor-mediated relaxation of rat urinary bladder

    Get PDF
    Purpose The human physiological bladder contraction is largely mediated by acetylcholine acting on muscarinic receptors, but in pathophysiological settings the relative role of non-cholinergic stimuli gains importance. beta-Adrenoceptor agonists are currently in clinical development as treatments for the overactive bladder syndrome. Therefore, we have explored the ability of the beta-adrenoceptor agonist isoprenaline to induce rat isolated bladder strip relaxation on pre-contraction with the muscarinic agonist carbachol as compared to bladder tone induced by several non-cholinergic stimuli. Methods Bladder tone was induced by passive tension, receptor independently by KCl, carbachol, bradykinin or serotonin. Concentration-response curves were generated for relaxation by isoprenaline, and a single concentration of the receptor-independent relaxant forskolin was also tested. Results The various contractile stimuli induced different degrees of bladder tone, but the ability of isoprenaline or forskolin to relax rat bladder was not correlated with the degree of tone. Isoprenaline was significantly less potent and effective in causing relaxation against carbachol-induced tone than against any other stimulus, whereas no such relationship was observed for forskolin. Conclusions We conclude that beta-adrenoceptor agonists can induce rat bladder relaxation against a wide range of contractile stimuli and are more potent and/or effective against non-cholinergic stimuli than against muscarinic agonism. This profile appears desirable for agents intended for the treatment of overactive bladde

    Activation of the SPHK/S1P signalling pathway is coupled to muscarinic receptor-dependent regulation of peripheral airways

    Get PDF
    BACKGROUND: In peripheral airways, acetylcholine induces contraction via activation of muscarinic M2-and M3-receptor subtypes (M(2)R and M(3)R). Cholinergic hypersensitivity is associated with chronic obstructive pulmonary disease and asthma, and therefore the identification of muscarinic signaling pathways are of great therapeutic interest. A pathway that has been shown to be activated via MR and to increase [Ca(2+)](i )includes the activation of sphingosine kinases (SPHK) and the generation of the bioactive sphingolipid sphingosine 1-phosphate (S1P). Whether the SPHK/S1P signaling pathway is integrated in the muscarinic control of peripheral airways is not known. METHODS: To address this issue, we studied precision cut lung slices derived from FVB and M(2)R-KO and M(3)R-KO mice. RESULTS: In peripheral airways of FVB, wild-type, and MR-deficient mice, SPHK1 was mainly localized to smooth muscle. Muscarine induced a constriction in all investigated mouse strains which was reduced by inhibition of SPHK using D, L-threo-dihydrosphingosine (DHS) and N, N-dimethyl-sphingosine (DMS) but not by N-acetylsphingosine (N-AcS), a structurally related agent that does not affect SPHK function. The initial phase of constriction was nearly absent in peripheral airways of M(3)R-KO mice when SPHK was inhibited by DHS and DMS but was unaffected in M(2)R-KO mice. Quantitative RT-PCR revealed that the disruption of the M(2)R and M(3)R genes had no significant effect on the expression levels of the SPHK1-isoform in peripheral airways. CONCLUSION: These results demonstrate that the SPHK/S1P signaling pathway contributes to cholinergic constriction of murine peripheral airways. In addition, our data strongly suggest that SPHK is activated via the M(2)R. Given the important role of muscarinic mechanisms in pulmonary disease, these findings should be of considerable therapeutic relevance

    Hunting for the high-affinity state of G-protein coupled receptors with agonist tracers:Theoretical and practical considerations for positron emission tomography (PET) imaging

    Get PDF
    The concept of the high-affinity state postulates that a certain subset of G-protein-coupled receptors is primarily responsible for receptor signaling in the living brain. Assessing the abundance of this subset is thus potentially highly relevant for studies concerning the responses of neurotransmission to pharmacological or physiological stimuli, and the dysregulation of neurotransmission in neurological or psychiatric disorders. The high-affinity state is preferentially recognized by agonists in vitro. For this reason, agonist tracers have been developed as tools for the non-invasive imaging of the high-affinity state with positron emission tomography (PET). This review provides an overview of agonist tracers that have been developed for PET imaging of the brain, and the experimental paradigms that have been developed for the estimation of the relative abundance of receptors configured in the high-affinity state. Agonist tracers appear to be more sensitive to endogenous neurotransmitter challenge than antagonists, as was originally expected. However, other expectations regarding agonist tracers have not been fulfilled. Potential reasons for difficulties in detecting the high-affinity state in vivo are discussed

    Antipsychotic withdrawal symptoms: Phenomenology and pathophysiology

    Full text link
    The authors review the literature discribing non-dyskinetic antipsychotic withdrawal phenomena. Withdrawal of these agents can cause nausea, emesis, anorexia, diarrhea, rhinorrhea, diaphoresis, myalgia, paresthesia, anxiety, agitation, restlessness, and insomnia. Psychotic relapse is often presaged by increased anxiety, agitation, restlessness and insomnia, but the temporal relationship of these prodromal symptoms to reduction in the dosage or discontinuation of neuroleptics distinguishes them from the effects of abrupt withdrawal.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65190/1/j.1600-0447.1988.tb05116.x.pd

    Pharmacological Evaluation of the Long-Term Effects of Xanomeline on the M1 Muscarinic Acetylcholine Receptor

    Get PDF
    Xanomeline is a unique agonist of muscarinic receptors that possesses functional selectivity at the M1 and M4 receptor subtypes. It also exhibits wash-resistant binding to and activation of the receptor. In the present work we investigated the consequences of this type of binding of xanomeline on the binding characteristics and function of the M1 muscarinic receptor. Pretreatment of CHO cells that stably express the M1 receptor for 1 hr with increasing concentrations of xanomeline followed by washing and waiting for an additional 23 hr in control culture media transformed xanomeline-induced inhibition of [3H]NMS binding from monophasic to biphasic. The high-affinity xanomeline binding site exhibited three orders of magnitude higher affinity than in the case of xanomeline added directly to the binding assay medium containing control cells. These effects were associated with a marked decrease in maximal radioligand binding and attenuation of agonist-induced increase in PI hydrolysis and were qualitatively similar to those caused by continuous incubation of cells with xanomeline for 24 hr. Attenuation of agonist-induced PI hydrolysis by persistently-bound xanomeline developed with a time course that parallels the return of receptor activation by prebound xanomeline towards basal levels. Additional data indicated that blockade of the receptor orthosteric site or the use of a non-functional receptor mutant reversed the long-term effects of xanomeline, but not its persistent binding at an allosteric site. Furthermore, the long-term effects of xanomeline on the receptor are mainly due to receptor down-regulation rather than internalization
    corecore