99 research outputs found
Natural killer cells and innate lymphoid cells but not NKT cells are mature in their cytokine production at birth.
Early life is a time of increased susceptibility to infectious diseases and development of allergy. Innate lymphocytes are crucial components of the initiation and regulation of immune responses at mucosal surfaces, but functional differences in innate lymphocytes early in life are not fully described. We aimed to characterise the abundance and function of different innate lymphocyte cell populations in cord blood in comparison to that of adults. Blood was collected from adult donors and umbilical vessels at birth. Multicolour flow cytometry panels were used to identify and characterise lymphocyte populations and their capacity to produce hallmark cytokines. Lymphocytes were more abundant in cord blood compared to adults, however, mucosal-associated invariant T (MAIT) cells and Natural Killer T (NKT)-like cells, were far less abundant. The capacity of NKT-like cells to produce cytokines and their expression of the cytotoxic granule protein granzyme B and the marker of terminal differentiation CD57 were much lower in cord blood than in adults. In contrast, Natural Killer (NK) cells were as abundant in cord blood as in adults, they could produce IFNγ, and their expression of granzyme B was not significantly different to that of adult NK cells, although CD57 expression was lower. All innate lymphoid cell (ILC) subsets were more abundant in cord blood, and ILC1 and ILC2 were capable of production of IFNγ and IL-13, respectively. In conclusion, different innate lymphoid cells differ in both abundance and function in peripheral blood at birth and with important implications for immunity in early life
A paragigm shift in assessment of scientific skills in undergraduate medical education
The General Medical Council’s publication ‘Outcomes for Graduates’ places emphasis on doctors being able to integrate biomedical science, research and scholarship with clinical practice. In response, a new paradigm of assessment was introduced for the intercalated Bachelor of Science program at Imperial College School of Medicine in 2019. This innovative approach involves authentic “active learning” assessments analogous to tasks encountered in a research environment and intends to test a wider range of applied scientific skills than traditional examinations. Written assessments include a “Letter to the Editor”, scientific abstract, and production of a lay summary. A clinical case study titled “Science in Context” presents a real or virtual patient, with evaluation of current and emerging evidence within that field. Another assessment emulates the academic publishing process: groups submit a literature review and engage in reciprocal peer review of another group’s work. A rebuttal letter accompanies the final submission, detailing how feedback was addressed. Scientific presentation skills are developed through tasks including a research proposal pitch, discussion of therapies or diagnostics, or review of a paper. A data management assignment develops skills in hypothesis generation, performing analysis, and drawing conclusions. Finally, students conduct an original research project which is assessed via a written report in the format of a research paper and an oral presentation involving critical analysis of their project. We aspire to train clinicians who apply scientific principles to critique the evidence base of medical practice and possess the skillset to conduct high-quality research underpinned by the principles of best clinical and academic practice. Assessment drives learning, and active learning has been demonstrated to enhance academic performance and reduce attainment gaps in science education. We therefore believe this strategy will help to successfully shape our students as future scientists and scholars as well as clinical practitioners and professionals
Exposure of neonates to Respiratory Syncytial Virus is critical in determining subsequent airway response in adults
BACKGROUND: Respiratory syncytial virus (RSV) is the most common cause of acute bronchiolitis in infants and the elderly. Furthermore, epidemiological data suggest that RSV infection during infancy is a potent trigger of subsequent wheeze and asthma development. However, the mechanism by which RSV contributes to asthma is complex and remains largely unknown. A recent study indicates that the age of initial RSV infection is a key factor in determining airway response to RSV rechallenge. We hypothesized that severe RSV infection during neonatal development significantly alters lung structure and the pulmonary immune micro-environment; and thus, neonatal RSV infection is crucial in the development of or predisposition to allergic inflammatory diseases such as asthma. METHODS: To investigate this hypothesis the present study was conducted in a neonatal mouse model of RSV-induced pulmonary inflammation and airway dysfunction. Seven-day-old mice were infected with RSV (2 × 10(5 )TCID(50)/g body weight) and allowed to mature to adulthood. To determine if neonatal RSV infection predisposed adult animals to enhanced pathophysiological responses to allergens, these mice were then sensitized and challenged with ovalbumin. Various endpoints including lung function, histopathology, cytokine production, and cellularity in bronchoalveolar lavage were examined. RESULTS: RSV infection in neonates alone led to inflammatory airway disease characterized by airway hyperreactivity, peribronchial and perivascular inflammation, and subepithelial fibrosis in adults. If early RSV infection was followed by allergen exposure, this pulmonary phenotype was exacerbated. The initial response to neonatal RSV infection resulted in increased TNF-α levels in bronchoalveolar lavage. Interestingly, increased levels of IL-13 and mucus hyperproduction were observed almost three months after the initial infection with RSV. CONCLUSION: Neonatal RSV exposure results in long term pulmonary inflammation and exacerbates allergic airways disease. The early increase in TNF-α in the bronchoalveolar lavage implicates this inflammatory cytokine in orchestrating these events. Finally, the data presented emphasize IL-13 and TNF-α as potential therapeutic targets for treating RSV induced-asthma
Matched sizes of activating and inhibitory receptor/ligand pairs are required for optimal signal integration by human Natural Killer cells
It has been suggested that receptor-ligand complexes segregate or co-localise within immune synapses according to their size, and this is important for receptor signaling. Here, we set out to test the importance of receptor-ligand complex dimensions for immune surveillance of target cells by human Natural Killer (NK) cells. NK cell activation is regulated by integrating signals from activating receptors, such as NKG2D, and inhibitory receptors, such as KIR2DL1. Elongating the NKG2D ligand MICA reduced its ability to trigger NK cell activation. Conversely, elongation of KIR2DL1 ligand HLA-C reduced its ability to inhibit NK cells. Whereas normal-sized HLA-C was most effective at inhibiting activation by normal-length MICA, only elongated HLA-C could inhibit activation by elongated MICA. Moreover, HLA-C and MICA that were matched in size co-localised, whereas HLA-C and MICA that were different in size were segregated. These results demonstrate that receptor-ligand dimensions are important in NK cell recognition, and suggest that optimal integration of activating and inhibitory receptor signals requires the receptor-ligand complexes to have similar dimensions
Nucleoprotein Nanostructures Combined with Adjuvants Adapted to the Neonatal Immune Context: A Candidate Mucosal RSV Vaccine
BACKGROUND: The human respiratory syncytial virus (hRSV) is the leading cause of severe bronchiolitis in infants worldwide. The most severe RSV diseases occur between 2 and 6 months-of-age, so pediatric vaccination will have to be started within the first weeks after birth, when the immune system is prone to Th2 responses that may turn deleterious upon exposure to the virus. So far, the high risk to prime for immunopathological responses in infants has hampered the development of vaccine. In the present study we investigated the safety and efficacy of ring-nanostructures formed by the recombinant nucleoprotein N of hRSV (N(SRS)) as a mucosal vaccine candidate against RSV in BALB/c neonates, which are highly sensitive to immunopathological Th2 imprinting. METHODOLOGY AND PRINCIPAL FINDINGS: A single intranasal administration of N(SRS) with detoxified E. coli enterotoxin LT(R192G) to 5-7 day old neonates provided a significant reduction of the viral load after an RSV challenge at five weeks of age. However, neonatal vaccination also generated an enhanced lung infiltration by neutrophils and eosinophils following the RSV challenge. Analysis of antibody subclasses and cytokines produced after an RSV challenge or a boost administration of the vaccine suggested that neonatal vaccination induced a Th2 biased local immune memory. This Th2 bias and the eosinophilic reaction could be prevented by adding CpG to the vaccine formulation, which, however did not prevent pulmonary inflammation and neutrophil infiltration upon viral challenge. CONCLUSIONS/SIGNIFICANCE: In conclusion, protective vaccination against RSV can be achieved in neonates but requires an appropriate combination of adjuvants to prevent harmful Th2 imprinting
Nasal lavage natural killer cell function is suppressed in smokers after live attenuated influenza virus
<p>Abstract</p> <p>Background</p> <p>Modified function of immune cells in nasal secretions may play a role in the enhanced susceptibility to respiratory viruses that is seen in smokers. Innate immune cells in nasal secretions have largely been characterized by cellular differentials using morphologic criteria alone, which have successfully identified neutrophils as a significant cell population within nasal lavage fluid (NLF) cells. However, flow cytometry may be a superior method to fully characterize NLF immune cells. We therefore characterized immune cells in NLF by flow cytometry, determined the effects of live attenuated influenza virus (LAIV) on NLF and peripheral blood immune cells, and compared responses in samples obtained from smokers and nonsmokers.</p> <p>Methods</p> <p>In a prospective observational study, we characterized immune cells in NLF of nonsmokers at baseline using flow cytometry and immunohistochemistry. Nonsmokers and smokers were inoculated with LAIV on day 0 and serial nasal lavages were collected on days 1-4 and day 9 post-LAIV. LAIV-induced changes of NLF cells were characterized using flow cytometry. Cell-free NLF was analyzed for immune mediators by bioassay. Peripheral blood natural killer (NK) cells from nonsmokers and smokers at baseline were stimulated <it>in vitro </it>with LAIV followed by flow cytometric and mediator analyses.</p> <p>Results</p> <p>CD45(+)CD56(-)CD16(+) neutrophils and CD45(+)CD56(+) NK cells comprised median 4.62% (range 0.33-14.52) and 23.27% (18.29-33.97), respectively, of non-squamous NLF cells in nonsmokers at baseline. LAIV did not induce changes in total NK cell or neutrophil percentages in either nonsmokers or smokers. Following LAIV inoculation, CD16(+) NK cell percentages and granzyme B levels increased in nonsmokers, and these effects were suppressed in smokers. LAIV inoculation enhanced expression of activating receptor NKG2D and chemokine receptor CXCR3 on peripheral blood NK cells from both nonsmokers and smokers <it>in vitro </it>but did not induce changes in CD16(+) NK cells or granzyme B activity in either group.</p> <p>Conclusions</p> <p>These data are the first to identify NK cells as a major immune cell type in the NLF cell population and demonstrate that mucosal NK cell cytotoxic function is suppressed in smokers following LAIV. Altered NK cell function in smokers suggests a potential mechanism that may enhance susceptibility to respiratory viruses.</p
Neonatal CD8 T-cell Hierarchy Is Distinct from Adults and Is Influenced by Intrinsic T cell Properties in Respiratory Syncytial Virus Infected Mice
Following respiratory syncytial virus infection of adult CB6F1 hybrid mice, a predictable CD8+ T cell epitope hierarchy is established with a strongly dominant response to a Kd-restricted peptide (SYIGSINNI) from the M2 protein. The response to KdM282-90 is ∼5-fold higher than the response to a subdominant epitope from the M protein (NAITNAKII, DbM187-195). After infection of neonatal mice, a distinctly different epitope hierarchy emerges with codominant responses to KdM282-90 and DbM187-195. Adoptive transfer of naïve CD8+ T cells from adults into congenic neonates prior to infection indicates that intrinsic CD8+ T cell factors contribute to age-related differences in hierarchy. Epitope-specific precursor frequency differs between adults and neonates and influences, but does not predict the hierarchy following infection. Additionally, dominance of KdM282-90 –specific cells does not correlate with TdT activity. Epitope-specific Vβ repertoire usage is more restricted and functional avidity is lower in neonatal mice. The neonatal pattern of codominance changes after infection at 10 days of age, and rapidly shifts to the adult pattern of extreme KdM282- 90 -dominance. Thus, the functional properties of T cells are selectively modified by developmental factors in an epitope-specific and age-dependent manner
A Role for the Chemokine RANTES in Regulating CD8 T Cell Responses during Chronic Viral Infection
RANTES (CCL5) is a chemokine expressed by many hematopoietic and non-hematopoietic cell types that plays an important role in homing and migration of effector and memory T cells during acute infections. The RANTES receptor, CCR5, is a major target of anti-HIV drugs based on blocking viral entry. However, defects in RANTES or RANTES receptors including CCR5 can compromise immunity to acute infections in animal models and lead to more severe disease in humans infected with west Nile virus (WNV). In contrast, the role of the RANTES pathway in regulating T cell responses and immunity during chronic infection remains unclear. In this study, we demonstrate a crucial role for RANTES in the control of systemic chronic LCMV infection. In RANTES−/− mice, virus-specific CD8 T cells had poor cytokine production. These RANTES−/− CD8 T cells also expressed higher amounts of inhibitory receptors consistent with more severe exhaustion. Moreover, the cytotoxic ability of CD8 T cells from RANTES−/− mice was reduced. Consequently, viral load was higher in the absence of RANTES. The dysfunction of T cells in the absence of RANTES was as severe as CD8 T cell responses generated in the absence of CD4 T cell help. Our results demonstrate an important role for RANTES in sustaining CD8 T cell responses during a systemic chronic viral infection
Chemokine Binding Protein M3 of Murine Gammaherpesvirus 68 Modulates the Host Response to Infection in a Natural Host
Murine γ-herpesvirus 68 (MHV-68) infection of Mus musculus-derived strains of mice is an attractive model of γ-herpesvirus infection. Surprisingly, however, ablation of expression of MHV-68 M3, a secreted protein with broad chemokine-binding properties in vitro, has no discernable effect during experimental infection via the respiratory tract. Here we demonstrate that M3 indeed contributes significantly to MHV-68 infection, but only in the context of a natural host, the wood mouse (Apodemus sylvaticus). Specifically, M3 was essential for two features unique to the wood mouse: virus-dependent inducible bronchus-associated lymphoid tissue (iBALT) in the lung and highly organized secondary follicles in the spleen, both predominant sites of latency in these organs. Consequently, lack of M3 resulted in substantially reduced latency in the spleen and lung. In the absence of M3, splenic germinal centers appeared as previously described for MHV-68-infected laboratory strains of mice, further evidence that M3 is not fully functional in the established model host. Finally, analyses of M3's influence on chemokine and cytokine levels within the lungs of infected wood mice were consistent with the known chemokine-binding profile of M3, and revealed additional influences that provide further insight into its role in MHV-68 biology
Platelet-Activating Factor Receptor Plays a Role in Lung Injury and Death Caused by Influenza A in Mice
Influenza A virus causes annual epidemics which affect millions of people
worldwide. A recent Influenza pandemic brought new awareness over the health
impact of the disease. It is thought that a severe inflammatory response against
the virus contributes to disease severity and death. Therefore, modulating the
effects of inflammatory mediators may represent a new therapy against Influenza
infection. Platelet activating factor (PAF) receptor (PAFR) deficient mice were
used to evaluate the role of the gene in a model of experimental infection with
Influenza A/WSN/33 H1N1 or a reassortant Influenza A H3N1 subtype. The following
parameters were evaluated: lethality, cell recruitment to the airways, lung
pathology, viral titers and cytokine levels in lungs. The PAFR antagonist
PCA4248 was also used after the onset of flu symptoms. Absence or antagonism of
PAFR caused significant protection against flu-associated lethality and lung
injury. Protection was correlated with decreased neutrophil recruitment, lung
edema, vascular permeability and injury. There was no increase of viral load and
greater recruitment of NK1.1+ cells. Antibody responses were
similar in WT and PAFR-deficient mice and animals were protected from
re-infection. Influenza infection induces the enzyme that synthesizes PAF,
lyso-PAF acetyltransferase, an effect linked to activation of TLR7/8. Therefore,
it is suggested that PAFR is a disease-associated gene and plays an important
role in driving neutrophil influx and lung damage after infection of mice with
two subtypes of Influenza A. Further studies should investigate whether
targeting PAFR may be useful to reduce lung pathology associated with Influenza
A virus infection in humans
- …