1,094 research outputs found

    Lin-Kernighan Heuristic Adaptations for the Generalized Traveling Salesman Problem

    Get PDF
    The Lin-Kernighan heuristic is known to be one of the most successful heuristics for the Traveling Salesman Problem (TSP). It has also proven its efficiency in application to some other problems. In this paper we discuss possible adaptations of TSP heuristics for the Generalized Traveling Salesman Problem (GTSP) and focus on the case of the Lin-Kernighan algorithm. At first, we provide an easy-to-understand description of the original Lin-Kernighan heuristic. Then we propose several adaptations, both trivial and complicated. Finally, we conduct a fair competition between all the variations of the Lin-Kernighan adaptation and some other GTSP heuristics. It appears that our adaptation of the Lin-Kernighan algorithm for the GTSP reproduces the success of the original heuristic. Different variations of our adaptation outperform all other heuristics in a wide range of trade-offs between solution quality and running time, making Lin-Kernighan the state-of-the-art GTSP local search.Comment: 25 page

    Theoretical study of scattering in graphene ribbons in the presence of structural and atomistic edge roughness

    Full text link
    We investigate the diffusive electron-transport properties of charge-doped graphene ribbons and nanoribbons with imperfect edges. We consider different regimes of edge scattering, ranging from wide graphene ribbons with (partially) diffusive edge scattering to ribbons with large width variations and nanoribbons with atomistic edge roughness. For the latter, we introduce an approach based on pseudopotentials, allowing for an atomistic treatment of the band structure and the scattering potential, on the self-consistent solution of the Boltzmann transport equation within the relaxation-time approximation and taking into account the edge-roughness properties and statistics. The resulting resistivity depends strongly on the ribbon orientation, with zigzag (armchair) ribbons showing the smallest (largest) resistivity and intermediate ribbon orientations exhibiting intermediate resistivity values. The results also show clear resistivity peaks, corresponding to peaks in the density of states due to the confinement-induced subband quantization, except for armchair-edge ribbons that show a very strong width dependence because of their claromatic behavior. Furthermore, we identify a strong interplay between the relative position of the two valleys of graphene along the transport direction, the correlation profile of the atomistic edge roughness, and the chiral valley modes, leading to a peculiar strongly suppressed resistivity regime, most pronounced for the zigzag orientation.Comment: 13 pages, 7 figure

    The role of electron-electron scattering in spin transport

    Full text link
    We investigate spin transport in quasi 2DEG formed by III-V semiconductor heterojunctions using the Monte Carlo method. The results obtained with and without electron-electron scattering are compared and appreciable difference between the two is found. The electron-electron scattering leads to suppression of Dyakonov-Perel mechanism (DP) and enhancement of Elliott-Yafet mechanism (EY). Finally, spin transport in InSb and GaAs heterostructures is investigated considering both DP and EY mechanisms. While DP mechanism dominates spin decoherence in GaAs, EY mechanism is found to dominate in high mobility InSb. Our simulations predict a lower spin relaxation/decoherence rate in wide gap semiconductors which is desirable for spin transport.Comment: to appear in Journal of Applied Physic

    The new Dutch timetable: The OR revolution

    Get PDF
    In December 2006, Netherlands Railways introduced a completely new timetable. Its objective was to facilitate the growth of passenger and freight transport on a highly utilized railway network, and improve the robustness of the timetable resulting in less train delays in the operation. Further adjusting the existing timetable constructed in 1970 was not option anymore, because further growth would then require significant investments in the rail infrastructure. Constructing a railway timetable from scratch for about 5,500 daily trains was a complex problem. To support this process, we generated several timetables using sophisticated operations research techniques, and finally selected and implemented one of these timetables. Furthermore, because rolling-stock and crew costs are principal components of the cost of a passenger railway operator, we used innovative operations research tools to devise efficient schedules for these two resources. The new resource schedules and the increased number of passengers resulted in an additional annual profit of 40 million euros (60million)ofwhichabout10millioneuroswerecreatedbyadditionalrevenues.Weexpectthistoincreaseto70millioneuros(60 million) of which about 10 million euros were created by additional revenues. We expect this to increase to 70 million euros (105 million) annually in the coming years. However, the benefits of the new timetable for the Dutch society as a whole are much greater: more trains are transporting more passengers on the same railway infrastructure, and these trains are arriving and departing on schedule more than they ever have in the past. In addition, the rail transport system will be able to handle future transportation demand growth and thus allow cities to remain accessible. Therefore, people can switch from car transport to rail transport, which will reduce the emission of greenhouse gases.

    Characterisation of the secondary-neutron production in particle therapy treatments with the MONDO tracking detector

    Get PDF
    Particle Therapy (PT) is a non-invasive technique that exploits charged light ions for the irradiation of tumours that cannot be effectively treated with surgery or conventional radiotherapy. While the largest dose fraction is released to the tumour volume by the primary beam, a non-negligible amount of additional dose is due to the beam fragmentation that occurs along the path towards the target volume. In particular, the produced neutrons are particularly dangerous as they can release their energy far away from the treated area, increasing the risk of developing a radiogenic secondary malignant neoplasm after undergoing a treatment. A precise measurement of the neutron flux, energy spectrum and angular distributions is eagerly needed in order to improve the treatment planning system software, so as to predict the normal tissue toxicity in the target region and the risk of late complications in the whole body. The MONDO (MOnitor for Neutron Dose in hadrOntherapy) project is dedicated to the characterisation of the secondary ultra-fast neutrons ([20-400] MeV energy range) produced in PT. The neutron tracking system exploits the reconstruction of the recoil protons produced in two consecutive (n, p) elastic scattering interactions to measure simultaneously the neutron incoming direction and energy. The tracker active media is a matrix of thin squared scintillating fibers arranged in orthogonally oriented layers that are read out by a sensor (SBAM) based on SPAD (Single-Photon Avalanche Diode) detectors developed in collaboration with the Fondazione Bruno Kessler (FBK)

    A Discrete State Transition Algorithm for Generalized Traveling Salesman Problem

    Full text link
    Generalized traveling salesman problem (GTSP) is an extension of classical traveling salesman problem (TSP), which is a combinatorial optimization problem and an NP-hard problem. In this paper, an efficient discrete state transition algorithm (DSTA) for GTSP is proposed, where a new local search operator named \textit{K-circle}, directed by neighborhood information in space, has been introduced to DSTA to shrink search space and strengthen search ability. A novel robust update mechanism, restore in probability and risk in probability (Double R-Probability), is used in our work to escape from local minima. The proposed algorithm is tested on a set of GTSP instances. Compared with other heuristics, experimental results have demonstrated the effectiveness and strong adaptability of DSTA and also show that DSTA has better search ability than its competitors.Comment: 8 pages, 1 figur

    Spin diffusion/transport in nn-type GaAs quantum wells

    Full text link
    The spin diffusion/transport in nn-type (001) GaAs quantum well at high temperatures (≄120\ge120 K) is studied by setting up and numerically solving the kinetic spin Bloch equations together with the Poisson equation self-consistently. All the scattering, especially the electron-electron Coulomb scattering, is explicitly included and solved in the theory. This enables us to study the system far away from the equilibrium, such as the hot-electron effect induced by the external electric field parallel to the quantum well. We find that the spin polarization/coherence oscillates along the transport direction even when there is no external magnetic field. We show that when the scattering is strong enough, electron spins with different momentums oscillate in the same phase which leads to equal transversal spin injection length and ensemble transversal injection length. It is also shown that the intrinsic scattering is already strong enough for such a phenomena. The oscillation period is almost independent on the external electric field which is in agreement with the latest experiment in bulk system at very low temperature [Europhys. Lett. {\bf 75}, 597 (2006)]. The spin relaxation/dephasing along the diffusion/transport can be well understood by the inhomogeneous broadening, which is caused by the momentum-dependent diffusion and the spin-orbit coupling, and the scattering. The scattering, temperature, quantum well width and external magnetic/electric field dependence of the spin diffusion is studied in detail.Comment: 12 pages, 6 figures, to be published in J Appl. Phy
    • 

    corecore